
Angle Labs

Angle Protocol
Smart Contract Security Review

Version: 2.0

September, 2021

Contents
Introduction 3Disclaimer . 3Document Structure . 3Overview . 3
Security Assessment Summary 4Findings Summary . 4
Detailed Findings 6

Summary of Findings 7Amount Zeroed Before Use in recoverUnderlying() . 9Potential Exploits from Guardian Role . 10Potential Flashloan Attacks on sanRate . 12
Lost Funds When Calling addToPerpetual() with a Negative Asset Value 14
setProportionalRatioGov() Potentially Not Called Before triggerSettlement() 16Claim Collateral on Behalf of HAs . 18Incorrectly Handled Edge Case in _computeDripAmount() . 19
Revoked StableMaster May be Deployed A Second Time . 21Potential Overflows in BondingCurve . 22
setGuardian() May Overwrite Itself . 23Circumvention of Maintenance Margin . 24
_computeDripAmount() is Non Linear in its Distribution . 25
Potential Accumulation of Interests After Calling signalLoss() 27
Integer Overflow in revokeStableMaster() . 28
Governor Must Be a Contract . 29Suboptimal Search Iteration . 30Suboptimal Delete Iteration . 32Duplicate Oracle Allowed on setOracle() . 34
Identical newFeeManager & oldFeeManager Allowed in setFeeManager() 35
Integer Overflow on Empty List in onlyCompatibleInputArrays 36
Integer Overflow in removeStakingContract() . 37
Calling updateHA() inside setHAFees() . 38
Revert When No Strategy . 39
Emit Then Update on addStrategy() . 41
Core Does not Need to be Initializable . 42Initialisation of Proxy Implementations . 43Purchase of Zero Tokens from BondingCurve . 44TWAP Period May be Set to Zero . 45Additional Constructor Checks . 46Event ReferenceCoinChanged is Unused . 48Front-Runnable Functions . 49Draft OpenZeppelin Dependencies . 50Reduce SLOAD Instructions when Reading Storage . 51Miscellaneous AngleProtocol General Comments . 53Reentrancy When Closing Perpetuals . 57Unnecessary Update of lastUpdateTime . 58
Reverts for Nonexistent Perpetuals in liquidatePerpetuals() 59
Gas Optimisation - Remove onlyOwnerOrApproved from addToPerpetual() 60

1

Miscellaneous AngleProtocol General Comments 2 . 61
A Test Suite 62

B Vulnerability Severity Classification 66

2

Angle Protocol Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Angle smart contracts.The review focused solely on the security aspects of the Solidity implementation of the contract, though generalrecommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contracts. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the Angle smart contracts contained within thescope of the security review. A summary followed by a detailed review of the discovered vulnerabilities isthen given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an open/-
closed/resolved status and a recommendation. Additionally, findings which do not have direct security implica-tions (but are potentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Angle smart contracts.

Overview

Angle Protocol is a Decentralised Finance (DeFi) protocol that issues over-collateralised stablecoins. Angle Pro-tocol provides a risk market between stablecoin seekers, hedging agents, and standard liquidity providers. AngleProtocol also runs strategies to improve the efficiency of the collateralised assets by lending them to other plat-forms such as Compound to get a higher yield which will be distributed to users, which in this case, are treatedas stakers.
Angle Protocol works identical to popular futures product called perpetual contract but on DeFi settings. Oraclesplay an important role to keep track of the collateralised assets, while keepers execute actions in timely manner.
Angle Protocol is managed by Governance contract. There is also a guardian role which can act swiftly in emer-gency situations.

Page | 3

Angle Protocol Security Assessment Summary

Security Assessment Summary

This review targeted commit 2819ccd hosted on the angle-core repository.
Specifically, the following smart contracts/folders were part of the scope of this security assessment:

• agToken/Agtoken.sol

• bondingCurve/bondingCurve.sol

• core/Core.sol

• dao/ANGLE.sol

• poolManager/*

• oracle/*

• feeManager/*

• perpetualManager/*

• sanToken/*

• stableMaster/*

• staking/*

• utils/*

• collateralSettler/*

Note: the OpenZeppelin libraries and dependencies were excluded from the scope of this assessment. Any other smart
contract not included in the list above was also excluded from this review.

Retesting activities targeted commit 271e6bb and identified additional issues (from AGL-35 to AGL-39) relatedto a series of updates introduced by the development team.
The manual code review section of the report focused on identifying any and all issues/vulnerabilities associ-ated with the business logic implementation of the contracts. Specifically, their internal interactions, intendedfunctionality and correct implementation with respect to the underlying functionality of the Ethereum VirtualMachine (for example, verifying correct storage/memory layout). Additionally, the manual review process fo-cused on all known Solidity anti-patterns and attack vectors. These include, but are not limited to, the followingvectors: re-entrancy, front-running, integer overflow/underflow and correct visibility specifiers. For a more thor-ough, but non-exhaustive list of examined vectors, see [1, 2].
To support this review, the testing team used the following automated testing tools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya

Output for these automated tools is available upon request.

Findings Summary

The testing team identified a total of 39 issues during this assessment. Categorized by their severity:
• Critical: 1 issue.
• High: 2 issues.
• Medium: 4 issues.

Page | 4

https://github.com/AngleProtocol/angle-core/commit/2819ccd8b62b09ce948da5088acba7b0b575d3f8
https://github.com/AngleProtocol/angle-core
https://github.com/AngleProtocol/angle-core/commit/271e6bb5d86ac4cad70cc55b33f597057a19feb3
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

Angle Protocol Findings Summary

• Low: 7 issues.
• Informational: 25 issues.

Page | 5

Angle Protocol Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Angle smart contractsin-scope. Each vulnerability has a severity classification which is determined from the likelihood and impact ofeach issue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 6

Summary of Findings

ID Description Severity Status
AGL-01 Amount Zeroed Before Use in recoverUnderlying() Critical Resolved

AGL-02 Potential Exploits from Guardian Role High Resolved

AGL-03 Potential Flashloan Attacks on sanRate High Resolved

AGL-04 Lost Funds When Calling addToPerpetual() with a Negative AssetValue Medium Resolved

AGL-05 setProportionalRatioGov() Potentially Not Called Before
triggerSettlement()

Medium Resolved

AGL-06 Claim Collateral on Behalf of HAs Medium Resolved

AGL-07 Incorrectly Handled Edge Case in _computeDripAmount() Medium Resolved

AGL-08 Revoked StableMaster May be Deployed A Second Time Low Resolved

AGL-09 Potential Overflows in BondingCurve Low Resolved

AGL-10 setGuardian() May Overwrite Itself Low Resolved

AGL-11 Circumvention of Maintenance Margin Low Resolved

AGL-12 _computeDripAmount() is Non Linear in its Distribution Low Resolved

AGL-13 Potential Accumulation of Interests After Calling signalLoss() Low Resolved

AGL-14 Integer Overflow in revokeStableMaster() Informational Resolved

AGL-15 Governor Must Be a Contract Informational Closed

AGL-16 Suboptimal Search Iteration Informational Resolved

AGL-17 Suboptimal Delete Iteration Informational Resolved

AGL-18 Duplicate Oracle Allowed on setOracle() Informational Resolved

AGL-19 Identical newFeeManager & oldFeeManager Allowed in
setFeeManager()

Informational Resolved

AGL-20 Integer Overflow on Empty List in onlyCompatibleInputArrays Informational Resolved

AGL-21 Integer Overflow in removeStakingContract() Informational Resolved

AGL-22 Calling updateHA() inside setHAFees() Informational Closed

7

AGL-23 Revert When No Strategy Informational Closed

AGL-24 Emit Then Update on addStrategy() Informational Resolved

AGL-25 Core Does not Need to be Initializable Informational Resolved

AGL-26 Initialisation of Proxy Implementations Informational Resolved

AGL-27 Purchase of Zero Tokens from BondingCurve Informational Resolved

AGL-28 TWAP Period May be Set to Zero Informational Resolved

AGL-29 Additional Constructor Checks Informational Resolved

AGL-30 Event ReferenceCoinChanged is Unused Informational Resolved

AGL-31 Front-Runnable Functions Informational Closed

AGL-32 Draft OpenZeppelin Dependencies Informational Closed

AGL-33 Reduce SLOAD Instructions when Reading Storage Informational Resolved

AGL-34 Miscellaneous AngleProtocol General Comments Informational Resolved

AGL-35 Reentrancy When Closing Perpetuals Low Open

AGL-36 Unnecessary Update of lastUpdateTime Informational Open

AGL-37 Reverts for Nonexistent Perpetuals in liquidatePerpetuals() Informational Open

AGL-38 Gas Optimisation - Remove onlyOwnerOrApproved from
addToPerpetual()

Informational Open

AGL-39 Miscellaneous AngleProtocol General Comments 2 Informational Open

8

Angle Protocol Detailed Findings

AGL-01 Amount Zeroed Before Use in recoverUnderlying()

Asset CollateralSettlerERC20.sol

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

The recoverUnderlying() function can be called by a governor to recover amountToRedistribute , that is
the amount of underlying tokens not allocated to any claims (by users, SLP or HA). The claimed tokens will betransferred to a preferred address specified in to as a function input variable.
This function can only be called when the base amount has been computed through calling function
setAmountToRedistributeEach() . However, there is an error on line [370-371] as seen below:
amountToRedistribute = 0;
underlyingToken . safeTransfer (to , amountToRedistribute);

In the code above, amountToRedistribute is zeroed before the tokens are transferred through
safeTransfer() . The impact is that the to address receives 0 tokens and the remaining tokens are effec-tively locked in the contract and cannot be withdrawn.

Recommendations

Consider using a temporary variable to store the amount before being zero (thereby preventing reentrancy) asseen in the following example.
localAmountToRedistribute = amountToRedistribute ;
amountToRedistribute = 0;
underlyingToken . safeTransfer (to , localAmountToRedistribute);

Resolution

PR #80 mitgates the issue by removing the function recoverUnderlying() to be replaced by a new func-
tion recoverERC20() . The new function allows a governor to transfer either the underlying token or any
ERC20 tokens owned by the CollateralSettlerERC20 contract to a destination address. For the case where
tokenAddress is the underlyingToken , the amount transferred is no longer read from state after being mod-ified, as seen in the following lines.
require (amountToRedistribute >= amountToRecover , "too big amount ");
amountToRedistribute -= amountToRecover ;
underlyingToken . safeTransfer (to , amountToRecover);

Page | 9

https://github.com/AngleProtocol/angle-solidity/pull/80/files

Angle Protocol Detailed Findings

AGL-02 Potential Exploits from Guardian Role
Asset contracts/
Status Resolved: See Resolution
Rating Severity: High Impact: Medium Likelihood: High

Description

Angle’s threat model includes two main types of permissioned users, Guardians and Governors. The Governorrole will be controlled by a DAO and will have the highest level of permissions, allowing direct withdrawal offunds from the protocol. The Guardian role is intended to be a multisig account owned by core developers andpotentially trusted third parties which can be used to act quickly in case of an attack.
The Guardian role should not be allowed to directly withdraw funds from the protocol. However, there are fourpotential ways for the Guardian role to exploit its privileges to withdraw funds from the protocol:

• The first attack vector available to a Guardian is through the PoolManager.addStrategy() function. The
PoolManager will transfer a large proportion of the funds owned by the protocol to a Strategy . The
Guardian is allowed to add any arbitrary address as a new Strategy which will receive the protocolscollateral tokens as an investment. Hence, they may add a malicious contract as the new strategy whichreceives tokens from the protocol then transfers these tokens to an attacker owned address.

• The second and third attack vectors are from manipulating the price by setting malicious oracles in thefunctions StableMaster.setOracle() and BondingCurve.changeOracle() :
– Manipulating the oracle price in StableMaster could be exploited from a malicious user by takingout a large position in the PerpetualManager . Then using a malicious oracle to increase the price

exponentially. This would increase the attackers cashOutAmount in the perpetual swap enough thatthey could withdraw all the collateral tokens in the protocol.
– Similarly by setting an advantageous price in BondingCurve they could buy tokens for significantlyless than what they are worth.

• Finally, a Guardian may extract all of the funds from the RewardsDistributor through the function
setStakingContract() . This allows the Guardian to specify a contract to receive reward tokens andthe amount of tokens that will be sent. By setting the staking contract to a malicious address, the Guardiancould withdraw all reward tokens from the RewardsDistributor .

Recommendations

Consider updating these functions to only be allowed to be called by accounts with the Governor role, therebypreventing misuse or malicious use by Guardians.

Resolution

Commits 48ae7f8 and a14d3e4 resolve the issue by setting the access control to be Governor only (rather thanGuardian) for the following functions:
Page | 10

https://github.com/AngleProtocol/angle-solidity/commit/48ae7f817c92212c31df2ae05d12c7f7da6f0861
https://github.com/AngleProtocol/angle-solidity/commit/a14d3e4c80d49e40cb14d63615fcb7111dd84c4d

Angle Protocol Detailed Findings

• PoolManager.addStrategy()

• StableMaster.setOracle()

• Bondingcurve.changeOracle()

• RewardsDistributor.setStakingContract()

Page | 11

Angle Protocol Detailed Findings

AGL-03 Potential Flashloan Attacks on sanRate

Asset StableMasterInternal.sol

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

The function _updateSanRate() is used to distribute any fees or interest payments to the current holders of
SanTokens . This is done by increasing the sanRate which will be multiplied against a user’s token balance todetermine the amount of collateral tokens they will receive when withdrawing.
There are two potential issues with the updating process which could allow an attacker to use a flashloan to takea large portion of the fees or interest that is to be paid to the SanToken holders.
The first issue is if no previous lockedInterests are present then lastBlockUpdated will not be updated.
Thus, a user (e.g. a malicious flashloaner) who deposits when there is no lockedInterests is still eligible forany future interest payments or fees received during the block.
The second issue is related to the protection against distributing too high a quantity of fees at one time. If thefees are above a certain percentage of the total supply of SanTokens then only a portion of the income willbe distributed. The following lines show the check if the proportion of fees is too high to be distributed in oneblock.
if (col. slpData . lockedInterests > (sanMint * col. slpData . maxSanRateUpdate) / BASE) {

// Limit distribution
col. sanRate += col. slpData . maxSanRateUpdate ;
// Substracting before dividing for rounding
_lockedInterests = (_lockedInterests * BASE - sanMint * col. slpData . maxSanRateUpdate)

/ BASE;
} else {

// Distribute all lockedInterests
col. sanRate += (_lockedInterests * BASE) / sanMint ;
_lockedInterests = 0;

}

Here sanMint represents the total supply of SanTokens and maxSanRateUpdate is a fixed percentage, makingthe check above equivalent to lockedInterests > totalSupply ∗ maxRate.
The exploit here is inherrent to a flashloan attack, that is because a flashloan attack desposits a significantsum of funds into SanTokens , making the total supply of SanTokens increase dramatically. Therefore,
_updateSanRate() will happily distribute a much higher quantity of lockedInterests compared to theamount that would be distributed before the flashloan had been deposited.

Recommendations

There are two issues to be mitigated:

1. Allowing an attacker to receive income in the same block they deposit funds. This can be mitigated

Page | 12

Angle Protocol Detailed Findings

by having col.slpData.lastBlockUpdated be updated to the current timestamp during every call to
_updateSanRate() , even if no interest is distributed.

2. Increasing the total supply of SanTokens to allow for more income to be distributed at one time. This canbe prevented by having a cap as an amount in tokens rather than a percentage. However, this value wouldneed to be updated regularly as the total supply grows and falls over time. The mitigation of the first issueprevents flashloans from claiming the interest and thus this attack would only be able to be executed bylarge scale investors who may invest for two or more blocks.

Resolution

Commit a14d3e4 corrects the issue by adding the following code on line [86] of StableMasterInternal.sol .
col. slpData . lastBlockUpdated = block . timestamp ;

The code above ensures that lastBlockUpdated is updated every time _updateSanRate() is called, thus
preventing a user from minting SanTokens and claiming interest in the same block.
Additionally, maxSanRateUpdate is replaced by a new parameter called maxInterestsDistributed , whichsets the maximum amount to be distributed as a fixed quantity rather than a percentage of total supply of
SanTokens . This update prevents a user from being able to distribute more interest in one block by increasingthe total supply of SanTokens .

Page | 13

https://github.com/AngleProtocol/angle-solidity/commit/a14d3e4c80d49e40cb14d63615fcb7111dd84c4d

Angle Protocol Detailed Findings

AGL-04 Lost Funds When Calling addToPerpetual() with a Negative Asset Value
Asset PerpetualManagerFront.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

When a perpetual value falls below the amount used to secure the swap, a perpetual is said to have a negative po-
sition. That is the perpetual cashOutAmount is less than zero. When there is a negative position for a perpetual,it should be liquidated and the amount used to cover the position should be transferrred to the protocol.
The function addToPerpetual() will check if the perpetual has a non-positive (≤ 0) position and if the conditionis met the perpetual will be liquidated.
However, before the perpetual is liquidated the funds are transferred from the user to the protocol. These fundsare not accounted for in the perpetual’s position when performing the liquidation check as seen in the codebelow.
_token . safeTransferFrom (msg.sender , address (poolManager), amount);

// Getting the oracle price
(uint256 rateDown , uint256 rateUp) = _getOraclePrice ();

// The committed amount does not change , there is no need to update staking variables here
(uint256 cashOutAmount ,) = _getCashOutAmount (perpetualID , rateDown);

if (cashOutAmount == 0) {
// Liquidating the perpetual if it is unhealthy
_liquidatePerpetual (perpetualID);

} else {
// Add to perpetual
...

}

Since the perpetual is liquidated without the funds being accounted for they are essentially lost from the user’sperspective.

Recommendations

We recommend moving safeTransferFrom() to within the else statement, thereby not transferring thefunds when the perpetual is to be liquidated.

Resolution

This has been resolved in commit a02f0b0. The new implementation transfers the collateral tokens only if theperpetual passes the liquidation check (through internal function _checkLiquidation()), as identified in the
following snippets from line [183-189].

Page | 14

https://github.com/AngleProtocol/angle-solidity/commit/a02f0b06688eed87cab2da8453f9ed52986320b5

Angle Protocol Detailed Findings

(, uint256 liquidated) = _checkLiquidation (perpetualID , perpetual , rateDown);
if (liquidated == 0) {

// Overflow check
_token . safeTransferFrom (msg.sender , address (poolManager), amount);
perpetualData [perpetualID]. margin += amount ;
emit PerpetualUpdated (perpetualID , perpetual . margin + amount);

}

Page | 15

Angle Protocol Detailed Findings

AGL-05 setProportionalRatioGov() Potentially Not Called Before triggerSettlement()

Asset CollateralSettlerERC20.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

Contract CollateralSettlerERC20 allows users to claim collateral tokens with their their stable tokens
(and governance tokens). The claim process can only be started once triggerSettlement() is called by
a StableMaster contract. While claiming, the contract requires some mandatory information, including
proportionalRatioGovUser and proportionalRatioGovLP , both of which are set through the function
setProportionalRatioGov() by a Governor.
There is a chance that function setProportionalRatioGov() is never called before triggerSettlement()

is executed. If this happens, then there would be Division or modulo by zero error during the claim. This is
because proportionalRatioGovUser and proportionalRatioGovLP are divisors/denominators in function
_treatClaim() if (amountGovToken > 0) and lp > 0.
The cause is the following code snippet from line [416-424].
if (amountGovToken > 0) {

// From the ‘amountGovToken ‘, computing the portion of the initial claim that is going to be
// treated as a preferable claim
uint256 amountInCGov ;
if (lp > 0) {

amountInCGov = (amountGovToken * BASE) / proportionalRatioGovLP ;
} else {

amountInCGov = (amountGovToken * BASE) / proportionalRatioGovUser ;
}

This occurrence will make claiming not possible if the user wants to use governance token, and there is noremedy for this event. Function setProportionalRatioGov() cannot be called after triggerSettlement() ,
as defined in line [384]
require (startTimestamp == 0, " ratios cannot be modified after start ");

Recommendations

Make sure proportionalRatioGovUser and proportionalRatioGovLP are not zero before calling
triggerSettlement() .

Page | 16

Angle Protocol Detailed Findings

Resolution

This has been resolved in commit e7c8e8b. The function now conducts an extra check to ensure all prerequisitesare satisfied.
require (proportionalRatioGovLP != 0 && proportionalRatioGovUser != 0, " invalid proportion ");

Page | 17

https://github.com/AngleProtocol/angle-solidity/commit/e7c8e8bdacd68b8814093b2fd6eeb64e6cc0fa3a

Angle Protocol Detailed Findings

AGL-06 Claim Collateral on Behalf of HAs
Asset CollateralSettlerERC20.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

When a collateral pool is being revoked users are able to make claims over the collateral. These claims are paidout based on preference. Users are able to attach governance tokens to their claims to give the claims a higherpreference.
In CollateralSettlerERC20 , the function claimHA() may be called by any user and will make a claim for theperpetual owner. As part of this function, the user is able to specify how much governance tokens are to beattached. Since there are no requirements for who the message sender is when claiming a perpetual, a malicioususer may claim other users perpetuals with zero governance tokens attached.
The benefit of this attack is that the malicious user would have a higher priority when it comes to redeeming thetokens if they have attached governance tokens when claiming their perpetual.

Recommendations

Consider only allowing users who are either approved or the owner of a perpetual to be al-lowed to claim a perpetual. This can be achieved through a public getter of the function
PerpetualManagerInternal._isApprovedOrOwner() .

Resolution

This has been resolved in commit 9065e85. The function can only be called by the perpetual owner or anapproved account. The check is implemented in the following code from line [301].
require (perpetualManager . isApprovedOrOwner (msg.sender , perpetualID), "not approved ");

Page | 18

https://github.com/AngleProtocol/angle-solidity/commit/9065e8527fb8ee4972ecc02bee8ca6b7b3734a11

Angle Protocol Detailed Findings

AGL-07 Incorrectly Handled Edge Case in _computeDripAmount()

Asset RewardsDistributor.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

The function _computeDripAmount() calculates the amount of tokens that should be sent to the
StakingRewards contract, dependant on the amount of time that has elapsed since the last reward distribution.
The following condition can be found on line [286-290] of RewardsDistributor.sol .
uint256 timeElapsed = _timeSinceStart (stakingParams);
uint256 timeLeft = stakingParams . duration - timeElapsed ;
if (stakingParams . distributedRewards >= stakingParams . amountToDistribute || timeLeft == 0) {

return 0;
}

The condition where timeLeft == 0 is reached when at least duration amount of time has passed since
timeStarted . In this case the rewards to be distributed is set to zero. This is not desirable as there may berewards that should be distributed.
Consider the extreme case where we begin with setStakingContract() , we let duration seconds pass
then call drip() . Now timeLeft == 0 , hence _computeDripAmount() will return zero. However, since
the entirety of duration has passed and no distributions have been made it would be preferable to return
amountToDistribute .
The undesirable edge case will arise when we have the following conditions:

• timeStarted + lastDistributeTime + updateFrequency < duration AND
• drip() is not called until after timeStarted + duration .

The result is a proportion of tokens will not be distributed and will remain unaccounted for in the contract.

Recommendations

This issue may be mitigated by distributing the rewardsLeftToDistribute if timeLeft == 0 which can beseen as follows.

Page | 19

Angle Protocol Detailed Findings

if (stakingParams . distributedRewards >= stakingParams . amountToDistribute) {
return 0;

}

uint256 timeElapsed = _timeSinceStart (stakingParams);
uint256 timeLeft = stakingParams . duration - timeElapsed ;
uint256 rewardsLeftToDistribute = stakingParams . amountToDistribute

- stakingParams . distributedRewards ;
if (timeLeft == 0) {

return rewardsLeftToDistribute ;
}

Resolution

This has been resolved in commit 4cd59ce. The function _computeDripAmount() now returns
rewardsLeftToDistribute if the mentioned edge case occurs.

Page | 20

https://github.com/AngleProtocol/angle-solidity/commit/4cd59cee5b6cfa04ca797a260b6b2fc6568495e4

Angle Protocol Detailed Findings

AGL-08 Revoked StableMaster May be Deployed A Second Time
Asset Core.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The Core smart contract is able to deploy StableMaster contracts which represent a new stable coin. The
Core also has the ability to revokeStableMaster() which essentially disowns a stablecoin.
When a StableMaster contract is revoked it is possible to add the contract back again by calling
deployStableMaster() . This will call StableMaster.deploy() adding the current guardian and governorroles, without removing the previous ones.

Recommendations

Consider adding a state variable in Core which stores a mapping(address=>boolean) as to whether an ad-
dress has been deployed as a StableMaster or not yet.

Resolution

In commit 4cd59ce a state variable was added to Core , that is, deployedStableMasterMap . The variable
enables to check whether a StableMaster has been deployed previously or not. The check is conducted on
line [114] in function deployStableMaster() .
require (! deployedStableMasterMap [stableMaster], " stableMaster previously deployed ");

Page | 21

https://github.com/AngleProtocol/angle-solidity/commit/4cd59cee5b6cfa04ca797a260b6b2fc6568495e4

Angle Protocol Detailed Findings

AGL-09 Potential Overflows in BondingCurve

Asset BondingCurve.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The operation totalTokensToSell**power appears in the functions _computePriceFromQuantity() and
getCurrentPrice() .
The expected decimal places of totalTokensToSell is 18 and the initial total supply is 1, 000, 000, 000 (1 billion).As totalTokensToSell is a uint256 this gives us 2256 − 1 as the max value which is about 78 decimal digits.Since the maximum in initial value of totalTokensToSell is 1027, if power ≥ 3 we could have a value of 1081

which would overflow a uint256 .
Note in getCurrentPrice() we have startPrice * (totalTokensToSell**power) where start price is alsoin 18 decimal digits further increasing the likelihood of an overflow.

Recommendations

Since power must be greater than one (1) due to other requirements and less than three (3) to prevent overflow
consider using a constant or hard coding the value to two (2).
If the value is hard coded to two (2) it may also be beneficial to change the order of operations to do some divisionoperations before all of the multiplications. However, this will have the trade off in a reduction in precision dueto rounding errors.

Resolution

The issue has been resolved in commit f0b86ff. The variable power was replaced by a hardcoded value of two
(2).

Page | 22

https://github.com/AngleProtocol/angle-solidity/commit/f0b86ffb6085fab3613e7d4c18ed3ea4a331f062

Angle Protocol Detailed Findings

AGL-10 setGuardian() May Overwrite Itself
Asset Core.sol , PoolManager.sol & StakingRewards.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The function setGuardian() in Core is used to recursively update the Guardian role for all contracts in theprotocol.
The function takes a parameter _guardian to be the new Guardian. It then performs the operations
grantRole() for the new Guardian and revokeRole() for the previous Guardian in that order.
This poses a potential issue if both the new Guardian and old Guardian are the same address. That is because itwill grant the permissions then revoke them leaving no users with Guardian permissions.
The same issue is present in PoolManager.setGuardian() which does _addGuardian(_guardian) then
_revokeGuardian(guardian) .
A similar issue also exists in StakingRewards.setNewRewardsDistributor() . Indeed, if the
newRewardsDistributor is the same as rewardsDistribution then the REWARD_DISTRIBUTOR_ROLE
will end up being revoked for this address and there will be no addresses with REWARD_DISTRIBUTOR_ROLEpermission.

Recommendations

We recommend adding a check to ensure the newGuardian is different to the previous Guardian (or new rewardsdistributor is different to the previous rewards distributor) and perform the revoke operations before the grantoperations.
Furthermore, consider updating the name _guardian to _newGuardian for better clarity.

Resolution

This issue has been addressed in PR #89. An additional check was added to ensure that the
newGuardian is not the same as the current guardian. A similar change was also made in
RewardsDistributor.setNewRewardsDistributor() , where the new RewardsDistributor contract shouldnot be identical to the current one.
Additionally, the order of operations was reversed in setCore() and setGuardian() to perform the revokeoperations before the grant operations.

Page | 23

https://github.com/AngleProtocol/angle-solidity/pull/89/files

Angle Protocol Detailed Findings

AGL-11 Circumvention of Maintenance Margin
Asset PerpetualManagerFront.sol

Status Resolved: Closed Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The maintenance margin exists so users can be liquidated if their position falls below a certain percentage of theperpetual’s inital bought amount.
The maintenance margin is measured as maintenanceMargin = position

cashOutAmount in the function
_getCashOutAmount() .
cashOutAmount is initially the amount transferred to the pool as collateral for the swap. However,
perpetual.cashOutAmount is updated when users call addToPerpetual() .
If a user has made a loss and is nearing the maintenance margin, they are able to call addToPerpetual(1)where 1 represents the smallest unit of value for the token, which will likely have negligible real value. This willupdate cashOutAmount to the total value of the new position, as a result the fraction position

cashOutAmount = 100%since cashOutAmount == position . This will prevent liquidation which will occur if the maintenance margin
falls below 0.3%.
The impact of this is that it is possible for a user to continue to stay above the maintenance margin so long astheir position is greater than zero. It is worth noting that the leverage, leverage = boughtAmount

position will continue toincrease by repeating this process. Since the leverage is increasing if the price continues to decrease the positionwill inevitably become negative and may be liquidated.
Note in addition to the above it is possible to call forceCashOutPerpetual() when the leverage reaches
cashOutLeverage which is initially 100.

Recommendations

Ensure the development team is aware of this scenario and understands how it may be mitigated.

Resolution

A high level redesign has modified the functions addToPerpetual() and removeFromPerpetual() such thatthis issue is no longer relevant.

Page | 24

Angle Protocol Detailed Findings

AGL-12 _computeDripAmount() is Non Linear in its Distribution
Asset RewardsDistributor.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The function drip() adheres to the following formula,
dripAmounti = updateFrequency ∗ amountT oDistribute−distributedRewardsi−1

duration−min(timestampi−timeStarted, duration)

There are two issues with the formula. First, since it can be expected that,
updateFrequency < timestampi − lastDistributionT ime

as drip() transactions will not be mined exactly every updateFrequency seconds. Thus, the amount of
time for this distribution (timestampi − lastDistributionT ime) is likely more than what is accounted for(updateFrequency), effectively under valuing dripAmount.
The second issue is that timeLeft uses the current timestamp whereas we use the previous
distributedRewards .
Consider the following example with the inital setup,

• timeStarted = 0

• timestamp0 = 0

• duration = 10

• updateFrequency = 1

• amountToDistribute = 30

• distributedRewards0 = 0

Say we are at timestamp1 = 1,
• dripAmount1 = 1 ∗ 30−0

10−min(1−0, 10) = 30
9 = 3.33

However, for a linear equation we would expect to have,
• dripAmount1 = amountT oDistribute

duration ∗ timeElapsed = 30
10 ∗ 1 = 3

Thus, the dripAmount from _computeDripAmount() is slightly over valued compared to a linear distribution.

Page | 25

Angle Protocol Detailed Findings

Recommendations

To obtain a linear rewards distribution consider updating the _computeDripAmount() function to use the for-mula,
• dripAmounti = amountToDistribute ∗ timestampi−lastDistributionT imei−1

duration

Note here we would need to update lastDistributeTime after executing _computeDripAmount() and thereshould be an additional check to handle the case where the elapsed time is greater than duration as follows.
if (rewardsLeftToDistribute < dripAmount) {

dripAmount = rewardsLeftToDistribute ;
}

Resolution

Function _computeDripAmount() has been updated in commit 4cd59ce to use the formula specified in therecommendation section, thereby ensuring linearity of the distribution.

Page | 26

https://github.com/AngleProtocol/angle-solidity/commit/4cd59cee5b6cfa04ca797a260b6b2fc6568495e4

Angle Protocol Detailed Findings

AGL-13 Potential Accumulation of Interests After Calling signalLoss()

Asset PoolManager.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

When a PoolManager has made a loss, the Strategy will call the report() function to signal this loss.
The order of operations in PoolManager.report() is to first call StableMaster.signalLoss() before calling
StableMaster.accumulateInterest() . Noting that it is not expected that a Strategy will report both a lossand a gain at the same time, thus this edge case is unlikely to arise.
After a loss is reported, no more gains should be accumulated to the SanRate . However, due to the order of
operations in PoolManager.report() if both a loss and a gain are reported at the same time, the gain will be
accumulated to the SanRate after the loss is reported, thereby distributing the interest to all of the SanTokenholders.

Recommendations

A solution to this issue is to reverse the order of operations in PoolManager.report() , thereby first accumu-lating the gains before reporting the losses.

Resolution

The order of operations was switched in PR #56 to do accumulateInterest() before signalLoss() .

Page | 27

https://github.com/AngleProtocol/angle-solidity/pull/56/files

Angle Protocol Detailed Findings

AGL-14 Integer Overflow in revokeStableMaster()

Asset Core.sol

Status Resolved: See Resolution
Rating Informational

Description

The revokeStableMaster() function is used to revoke a StableMaster contract from the Core contract,
and therefore removes the related stablecoin from stablecoinList . This function assumes there is always atleast one stablecoin in stablecoinList , as shown in line [89].
for (uint256 i = 0; i < stablecoinList . length - 1; i++) {

If a Governor tries to execute this function where there is no existing stablecoin, there will be a negative integeroverflow, caused by stablecoinList.length - 1 which equals to 0 - 1 in an uint256 variable. Fortunately,
starting from Solidity 0.8.0, integer overflows are mitigated. However, from a user’s perspective, the error mes-sage is unclear.

Recommendations

Consider adding an extra check inside the revokeStableMaster() function to make sure there is at least one
stablecoin in stablecoinList .
if(stableCoinList . length > 0)

for (uint256 i = 0; i < stablecoinList . length - 1; i++) {

Resolution

This has been resolved in commit 4cd59ce. The new implementation introduces an additional check to ensurethat there exists at least one item on the list before revoking. Related code from line [134-136]:
uint256 stablecoinListLength = stablecoinList . length ;
// Checking if ‘stableMaster ‘ is correct and removing the stablecoin from the ‘stablecoinList ‘
require (stablecoinListLength >= 1, " incorrect stablecoin ");

Page | 28

https://github.com/AngleProtocol/angle-solidity/commit/4cd59cee5b6cfa04ca797a260b6b2fc6568495e4

Angle Protocol Detailed Findings

AGL-15 Governor Must Be a Contract
Asset Core.sol

Status Closed: See Resolution
Rating Informational

Description

The Core contract that has a strong control over StableMaster contracts is managed by Governors, whichare expected to be instances of the Governor contract. Specifically, governors are authorised to call thefollowing functions:

• deployStableMaster()

• revokeStableMaster()

• addGovernor()

• removeGovernor()

While the above functions are supposed to be called from authorised instances of the Governor contract,governors could technically be Externally Owned Accounts (EOAs).
This would significantly increase the likelihood of a compromise as a related private key could be leaked orretrieved by malicious actors, endangering the security of the Core contract, and ultimately the overall Angleprotocol.

Recommendations

Consider ensuring that assigned governors are actual smart contracts. For example, The OpenZeppelin Addresscontract provides a function that implements this check (isContract()).

Resolution

The development team acknowledges the risk and will not implement any mitigation strategy at the moment.During the deployment phase, the Governor role is given to an EOA.

Page | 29

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/566a774222707e424896c0c390a84dc3c13bdcb2/contracts/utils/Address.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/566a774222707e424896c0c390a84dc3c13bdcb2/contracts/utils/Address.sol#L26

Angle Protocol Detailed Findings

AGL-16 Suboptimal Search Iteration
Asset Core.sol

Status Resolved: See Resolution
Rating Informational

Description

Contract Core utilises two address lists, namely stablecoinList and governorList to store the list of sta-blecoins and governors, respectively. To track the existence of a stablecoin or a governor in the mentioned lists,the contract iterates through the lists to get the item index.
For example, line [65-69] in function deployStableMaster() indicates an iterative process of finding whether
a StableMaster contract of an AgToken contract has been deployed. This iteration can be expensive in terms
of gas usage if stablecoinList has a large membership.
Similar type of iteration in the contract can be found in the following functions:

• deployStableMaster(), line [65-69]
• addGovernor(), line [115-117]
• setGuardian(), line [167-169]

Consider the following snippet from line [64-70]:
uint256 indexMet = 0;
for (uint256 i = 0; i < stablecoinList . length ; i++) {

if (stablecoinList [i] == stableMaster) {
indexMet = 1;

}
}
require (indexMet == 0, " stableMaster already deployed ");

The for iteration in the snippet above always conducts search from index 0 to stablecoinList.length ,which is suboptimal.

Recommendations

The testing team recommends inserting a break after the search data is found.
uint256 indexMet = 0;
uint256 listLength = stablecoinList . length ;
for (uint256 i = 0; i < listLength ; i++) {

if (stablecoinList [i] == stableMaster) {
indexMet = 1;
break ;

}
}
require (indexMet == 0, " stableMaster already deployed ");

Page | 30

Angle Protocol Detailed Findings

Resolution

This has been resolved in commit 4cd59ce. Some search functions within the project were optimised by utilising
mapping to access the intended item instantly without iteration. break was also introduced to applicable codesto stop an iteration quickly after a condition is met.

Page | 31

https://github.com/AngleProtocol/angle-solidity/commit/4cd59cee5b6cfa04ca797a260b6b2fc6568495e4

Angle Protocol Detailed Findings

AGL-17 Suboptimal Delete Iteration
Asset contracts/
Status Resolved: See Resolution
Rating Informational

Description

The contracts have several list item deletion operations, which can be found in the following functions:

• Core.revokeStableMaster(), line [89-96]
• Core.removeGovernor(), line [138-145]
• PoolManager.revokeStrategy(), line [301-328]
• StableMaster.revokeCollateral(), line [328-369]
• RewardsDistributor.removeStakingContract(), line [154-173]

Consider the following snippet from Core.sol line [88-98].
uint256 indexMet = 0;
for (uint256 i = 0; i < stablecoinList . length - 1; i++) {

if (stablecoinList [i] == stableMaster) {
indexMet = 1;

}
if (indexMet == 1) {

stablecoinList [i] = stablecoinList [i + 1];
}

}
require (indexMet == 1 || stablecoinList [stablecoinList . length - 1] ==

stableMaster , " incorrect stablecoin ");
stablecoinList .pop ();

The for iteration in the snippet above always conducts search from index 0 to stablecoinList.length ; ifan item is found, then the next items are shifted to the left in order not to leave a gap in the list. This operationuses an excessive amount of gas due to numerous SLOAD operations.

Recommendations

The testing team recommends swapping the deleted item with the last item if item order is not important.
Also consider a gas optimisation where the length of the list (listLength) is cached to reduce the number of
SLOAD instructions, which can be applied to all array iterations, not just deletions.

Page | 32

Angle Protocol Detailed Findings

uint256 indexMet = 0;
uint256 listLength = stablecoinList . length ;
for (uint256 i = 0; i < listLength - 1; i++) {

if (stablecoinList [i] == stableMaster) {
stablecoinList [i] = stablecoinList [listLength - 1];
stablecoinList .pop ();
indexMet = 1;
break ;

}
}
require (indexMet == 1, " incorrect stablecoin ");

Resolution

This has been resolved in commit 2848add. The deleted item is now swapped with the last item, because thedevelopment team considers item order as not important. The list length is now cached whenever possible toreduce SLOAD opcode usage.

Page | 33

https://github.com/AngleProtocol/angle-solidity/commit/2848add265fffcbdfa6e32a6b47121c10fe199b2

Angle Protocol Detailed Findings

AGL-18 Duplicate Oracle Allowed on setOracle()

Asset StableMaster.sol

Status Resolved: See Resolution
Rating Informational

Description

The function setOracle() in StableMaster sets a new oracle address which is forwarded to the associatedcollateral’s PoolManager and PerpetualManager.
The function does not check whether the input _oracle is the same as the current oracle in the collateral.

Recommendations

The testing team recommends adding a check similar to the following snippet:
require (col. oracle != _oracle , " identical oracle ");

Resolution

The recommended check has been added in commit 2848add, thereby preventing accidental issue.

Page | 34

https://github.com/AngleProtocol/angle-solidity/commit/2848add265fffcbdfa6e32a6b47121c10fe199b2

Angle Protocol Detailed Findings

AGL-19 Identical newFeeManager & oldFeeManager Allowed in setFeeManager()

Asset StableMaster.sol

Status Resolved: See Resolution
Rating Informational

Description

The setFeeManager() function enables a caller with GUARDIAN_ROLE to modify the FeeManager address of
a specific collateral from oldFeeManager to newFeeManager . The changes affect the contractMap variable
and the related PoolManager contract through poolManager.setFeeManager() .
The function setFeeManager() in StableMaster contract does not check whether the newFeeManager is
identical to the previous value, oldFeeManager .

Recommendations

The testing team recommends adding the following extra check:
require (newFeeManager != oldFeeManager , " identical fee manager ");

Resolution

The recommended check has been added in commit 2848add, thereby preventing accidental issue.

Page | 35

https://github.com/AngleProtocol/angle-solidity/commit/2848add265fffcbdfa6e32a6b47121c10fe199b2

Angle Protocol Detailed Findings

AGL-20 Integer Overflow on Empty List in onlyCompatibleInputArrays

Asset FunctionUtils.sol

Status Resolved: See Resolution
Rating Informational

Description

The modifier onlyCompatibleInputArrays verifies whether two lists of uint256 satisfy certain conditions,namely:

• both lists should be of the same length,
• the numbers inside the list are ascending.

When both lists are empty, it passes the length check on line [57]. Then, an integer overflow error occurs. Thisis caused by the iteration on line [58].
for (uint256 i = 0; i <= yArray . length - 1; i++) {

When yArray.length is zero, then yArray.length - 1 overflows the uint256 .
Note: from Solidity 0.8.0, integer overflows result in reverts .

Recommendations

The testing team recommends rejecting empty lists as inputs. For example, by adding an extra check using thefollowing snippet:
require (xArray . length > 0, " empty array ");

Resolution

The recommended check was added in commit 2848add preventing negative integer overflow.

Page | 36

https://github.com/AngleProtocol/angle-solidity/commit/2848add265fffcbdfa6e32a6b47121c10fe199b2

Angle Protocol Detailed Findings

AGL-21 Integer Overflow in removeStakingContract()

Asset RewardsDistributor.sol

Status Resolved: See Resolution
Rating Informational

Description

Function removeStakingContract() removes a staking contract from RewardsDistributor contract. If thisfunction is called while no staking contract is set, then a negative integer overflow occurs. This is because thereis no check on the length of stakingContractsList before the following iteration on line [156].
for (uint256 i = 0; i < stakingContractsList . length - 1; i++)

If there is no existing staking contract on stakingContractsList , then the function reverts.
Note: from Solidity 0.8.0, integer overflows result in reverts .

Recommendations

An extra check can be introduced within the function to make sure there is at least one staking contract in
stakingContractsList .
if(stakingContractsList . length > 0)

for (uint256 i = 0; i < stakingContractsList . length - 1; i++) {

Resolution

The recommended check was added in commit 2848add preventing negative integer overflow.

Page | 37

https://github.com/AngleProtocol/angle-solidity/commit/2848add265fffcbdfa6e32a6b47121c10fe199b2

Angle Protocol Detailed Findings

AGL-22 Calling updateHA() inside setHAFees()

Asset FeeManager.sol

Status Closed: See Resolution
Rating Informational

Description

The functions setHAFees() and updateHA() in FeeManager contract are used to manipulate the keeper
fees. setHAFees() changes the values of the haFeeDeposit and haFeeWithdraw variables. On
the other hand, updateHA() sends these values to PerpetualManager (through a call to the function
PerpetualManager.setFeeKeeper()).
The current implementation requires two separate calls to setHAFees() (by guardian role) and updateHA()
(by a keeper).

Recommendations

Consider calling updateHA() inside setHAFees() to ensure the fee rates are immediately updated.

Resolution

The development team have decided not to implement this recommendation as it will not be compatible withimprovements planned for updateHA() .

Page | 38

Angle Protocol Detailed Findings

AGL-23 Revert When No Strategy

Asset PoolManager.sol

Status Closed: See Resolution
Rating Informational

Description

The functions addGovernor() , removeGovernor() , setGuardian() , and revokeGuardian() respectively
invoke the functions _addGuardian() and _revokeGuardian() from the PoolManagerInternal contract.
The last two functions mentioned assume there exists at least one Strategy contract in strategyList . This
condition is not always necessarily true. If no Strategy has been added, the functions to add and remove (or
revoke) governors and guardians in the PoolManager contract will revert.
This is caused by the following loop block from line [40-42] (PoolManagerInternal.sol):
for (uint256 i = 0; i < strategyList . length ; i++) {

IStrategy (strategyList [i]). addGuardian (_guardian);
}

Additionally, the loop block from L51-53 (PoolManagerInternal.sol):
for (uint256 i = 0; i < strategyList . length ; i++) {

IStrategy (strategyList [i]). revokeGuardian (guardian);
}

Recommendations

Make sure this behaviour is intended. The testing team recommends adding a conditional check to ensure atleast one strategy has been added before stepping inside a loop block. See the following snippets for examples:
• addGuardian() :

uint256 listLength = strategyList . length ;
require (listLength > 0)
for (uint256 i = 0; i < strategyList . length ; i++) {

IStrategy (strategyList [i]). addGuardian (_guardian);
}

Page | 39

Angle Protocol Detailed Findings

• revokeGuardian() :

uint256 listLength = strategyList . length ;
require (listLength > 0)
for (uint256 i = 0; i < listLength ; i++) {

IStrategy (strategyList [i]). revokeGuardian (guardian);
}

Resolution

These lists may be iterated when the length is zero and thus this is not considered an issue by the developmentteam.

Page | 40

Angle Protocol Detailed Findings

AGL-24 Emit Then Update on addStrategy()

Asset PoolManager.sol

Status Resolved: See Resolution
Rating Informational

Description

The function addStrategy() adds a new strategy to the PoolManager contract and also updates the global pa-
rameters debtRatio . In this function, the event StrategyAdded is emitted in line [289], while the debtRatio

variable is updated in line [292]. As a result, the event emits an old value of debtRatio and not the newest one.

Recommendations

Consider updating the addStrategy() function such that it emits the StrategyAdded after the debtRatiovariable update.
// Update global parameters
debtRatio += _debtRatio ;

emit StrategyAdded (strategy , debtRatio);

Resolution

The resolution of this issue was to update debtRatio before emitting the event. This can be seen in PR #54.

Page | 41

https://github.com/AngleProtocol/angle-solidity/pull/54/files

Angle Protocol Detailed Findings

AGL-25 Core Does not Need to be Initializable

Asset Core.sol

Status Resolved: See Resolution
Rating Informational

Description

The contract Core inherits Initializable . This is an unnecessary inheritance since Core will receive all ofits parameters in the constructor and is not upgradeable via a proxy.

Recommendations

The inheritance Initializable may be safely removed.

Resolution

The inheritance of Initializable was removed in commit f0b86ff.

Page | 42

https://github.com/AngleProtocol/angle-solidity/commit/f0b86ffb6085fab3613e7d4c18ed3ea4a331f062

Angle Protocol Detailed Findings

AGL-26 Initialisation of Proxy Implementations
Asset contracts/
Status Resolved: See Resolution
Rating Informational

Description

When using an upgradeable proxy over an implementation it is important to ensure the underyling implementa-tion is initialised in addition to the proxied contract.
Consider the following example where we have a TransparentUpgradeableProxy as contractA and a
StableMaster as contractB . As a parameter to the constructor of contractA the data is provided to make
a delegate call to contractB.initialize() which updates the storage as required in contractA .
Thus, contractB has not been initialized, only contractA has had its state updated. As a result any user is
able to call initialize() on contractB , giving themselves full permissions over the contract.
There are two reasons why it is not desirable for malicious users to have full control over a contract:

1. Any delegate calls to external contracts can call selfdestruct which would delete the implementationcontract temporarily making the proxy unusable (until it can be updated with a new implementation);
2. Scammers and malicious users may use contracts that are verified on etherscan.io and other block ex-plorers.

Recommendations

Ensure that the initialize() function is called on all underlying implementations during deployment.

Resolution

Updates have been made to the deployment scripts to mitigate this issue by initialising the underlying contracts.

Page | 43

etherscan.io

Angle Protocol Detailed Findings

AGL-27 Purchase of Zero Tokens from BondingCurve

Asset BondingCurve.sol

Status Resolved: See Resolution
Rating Informational

Description

Tokens can be bought from the BondingCurve contract through the function buySoldTokens() , which ex-changes a stablecoin token for another ERC20 token.
The contract allows users to pass zero (0) as the targetSoldTokenQuantity to the function. This will likely later
fail the condition require(amountToPayInAgToken > 0) since the cost of zero tokens should also be zero.

Recommendations

Consider adding an additional check to prevent users from attempting to buy zero tokens.

Resolution

This issue has been resolved in commit 2848add by adding a check to ensure targetSoldTokenQuantity isgreater than zero.

Page | 44

https://github.com/AngleProtocol/angle-solidity/commit/2848add265fffcbdfa6e32a6b47121c10fe199b2

Angle Protocol Detailed Findings

AGL-28 TWAP Period May be Set to Zero
Asset UniswapUtils.sol

Status Resolved: See Resolution
Rating Informational

Description

The function changeTwapPeriod(uint32 _twapPeriod) sets the Time Weighted Average Price (TWAP) pe-riod for an Uniswap oracle.
It is possible to set _twapPeriod to zero using this function. This would make the function
_readUniswapPool() unuseable due to the assert statement on line [42].

Recommendations

We recommend adding a check to ensure that int32(twapPeriod) > 0 in changeTwapPeriod() thereby
preventing both potential integer overflows (when casting from a uint32) and the zero case described above.
Consider also updating the assert on line [42] to a require statement.

Resolution

This issue was mitigated in commit 2848add by ensuring twapPeriod is non-zero and will not overflow on
casting in changeTwapPeriod() , and removing the check from _readUniswapPool() .

Page | 45

https://github.com/AngleProtocol/angle-solidity/commit/2848add265fffcbdfa6e32a6b47121c10fe199b2

Angle Protocol Detailed Findings

AGL-29 Additional Constructor Checks
Asset contracts/
Status Resolved: See Resolution
Rating Informational

Description

Additional checks may be added to the constructors in various contracts to prevent accidental misconfigurationduring deployment.
These checks include:

• ModuleUniswapMulti.sol

– guardians.length > 0

– _circuitUniswap.length == _circuitUniIsMultiplied

– sanity checks for observationLength

• ModuleChainlinkMulti.sol

– circuitChainIsMultiplied is either 0 or 1
• OracleMulti.sol

– _uniFinalCurrency is either 0 or 1
• StakingRewards.sol

– _rewardsToken == IRewardsDistributor(_rewardsDistribution).rewardToken()

Recommendations

Consider adding some or all of these checks to the relevant constructor.

Resolution

The development team has decided to add the following checks:

• ModuleUniswapMulti.sol

– guardians.length > 0

– _circuitUniswap.length == _circuitUniIsMultiplied

Page | 46

Angle Protocol Detailed Findings

The checks ModuleChainlinkMulti.circuitChainIsMultiplied and OracleMulti_uniFinalCurrency is
either 0 or 1 were not implemented as 1 is considered true and all other values false .
Verification of StakingRewards._rewardsToken is done in RewardsDistributor.sol rather than
StakingRewards.sol to improve deployment and testing.

Page | 47

Angle Protocol Detailed Findings

AGL-30 Event ReferenceCoinChanged is Unused
Asset BondingCurve.sol

Status Resolved: See Resolution
Rating Informational

Description

The event ReferenceCoinChanged in BondingCurveEvents is never emitted and may be safely removed.

Recommendations

Consider removing the event ReferenceCoinChanged from the BondingCurveEvents.sol contract.

Resolution

The recommendation has been implemented by safely removing the unused event.

Page | 48

Angle Protocol Detailed Findings

AGL-31 Front-Runnable Functions
Asset contracts/
Status Closed: See Resolution
Rating Informational

Description

A number of functions have the potential to be front-run to the gain of malicious users. Front-running at-tacks [3, 4] involve users watching the Blockchain mempool for particular transactions and, upon observing sucha transaction, submitting their own transactions with a greater gas price. This incentivises miners to prioritisethe later transaction.
The function StableMaster.signalLoss() can be front-run by users calling
StableMasterFront.withdraw() as an SLP. The benefit to the attacker is that they are not distributed the
losseswhich are shared over all SanToken holders. Similarly, a usermaywant to call StableMaster.deposit()
if there is a large amount of locked interests or fees that are due to be accumulated to the SanTokens .
Users can submit transactions before or after fee changes (and potentially call update* functions themselves)
to gain the best fees. As such the functions updateUsersSLP() and updateHA() are front-runnable.
Price feeds are updated via transactions from the oracle, users are able to front-run these transactions to gainmore favourable prices.
Each of the keeper functions, such as PerpetualManager.liquidatePerpetual() and
PerpetualManager.forceCashOutPerpetual() , reward the first message sender in the form of feescan also be front-run.
Similarly, the function RewardsDistributor.drip() can cause competition with only one winner taking theincentive.

Recommendations

Ensure all possible front-running vectors are understood, accounted for in the protocol, and potentially docu-mented.

Resolution

The development team have acknowledged potential risks of front running and are preparing documents forusers. From the protocol’s perspective, the keepers rewards are only distributed once and it is irrelevant if theyare front-run by other users. With respect to signalLoss() , it should be very rare (if ever) that this function iscalled and thus it is unlikely to be a targeted by front-running.

Page | 49

Angle Protocol Detailed Findings

AGL-32 Draft OpenZeppelin Dependencies
Asset AgTokenEvents.sol & SanToken.sol

Status Closed: See Resolution
Rating Informational

Description

Both of AgToken and SanToken inherit ERC20PermitUpgradeable , an OpenZeppelin contract. This contractis still a draft and is not considered ready for mainnet use. OpenZeppelin contracts may be considered draftcontracts if they have not received adequate security auditing or are liable to change with future development.

Recommendations

Ensure the development team is aware of the risks of using a draft contract or consider waiting until the contractis finalised.

Resolution

The development team are aware of the risks of using a draft OpenZeppelin contract and have accepted therisk-benefit trade-off.

Page | 50

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/token/ERC20/extensions/draft-ERC20PermitUpgradeable.sol

Angle Protocol Detailed Findings

AGL-33 Reduce SLOAD Instructions when Reading Storage
Asset contracts/
Status Resolved: See Resolution
Rating Informational

Description

Loading structs to memory is gas expensive as it will load every variable from storage, into memory requiringmany expensive SLOAD instructions.
Consider using storage or loading just the variables needed for the following cases:

• StableMaster.getCollateralRatio() , line [145],
Collateral memory collat = collateralMap[managerList[i]];

may be replaced with:
Collateral storage collat = collateralMap[managerList[i]];

• PerpetualManagerFront.removeFromPerpetual() , line [219]
Perpetual memory perpetual = perpetualData[perpetualID];

may be replaced with:
Perpetual storage perpetual = perpetualData[perpetualID];

• PerpetualManagerInternal._liquidatePerpetual() , line [22]
Perpetual memory perpetual = perpetualData[perpetualID];

may be replaced with the lines:
uint256 committedAmount = perpetualData[perpetualID].committedAmount;

uint256 cashOutAmount = perpetualData[perpetualID].cashOutAmount;

• PerpetualManagerInternal._cashOutPerpetual() , line [48]
Perpetual memory perpetual = perpetualData[perpetualID];

may be replaced with the lines:
uint256 committedAmount = perpetualData[perpetualID].committedAmount;

uint256 oldCashOutAmount = perpetualData[perpetualID].cashOutAmount;

Recommendations

Ensure the comments are understood and consider implementing the gas optimisations.

Page | 51

Angle Protocol Detailed Findings

Resolution

The first recommendation to update StableMaster.getCollateralRatio() was implemented. However, theremaining recommendations were no longer applicable due to design alterations which updated the code base.

Page | 52

Angle Protocol Detailed Findings

AGL-34 Miscellaneous AngleProtocol General Comments
Asset contracts/*

Status Resolved: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security impli-cations:

1. Confusing function name deploy() in AgToken.sol and StableMaster.sol

The function deploy() is used to grant role GUARDIAN_ROLE to a list of governors (in governorList) and to
guardian. The function names may confuse readers because of its similarities with contract deployment.Furthermore, the name does not properly reflect the purpose of the function.
The testing team recommends renaming this function (e.g. assignGuardianRole()).

2. Unclear revert message in Core.sol

On line [134], consider changing the revert message "only one governor" with
"must have at least one governor" .

3. Inconsistent Variable Naming in PerpetualManager.sol

• Inconsistent variable naming between feeDeposit and feesWithdraw . Should be consistentwhether to use fee or fees.
• Inconsistent variable naming between rewardDistribution and rewardDistributor in function

setNewRewardsDistributor() .
• Inconsistent variable naming between _rewardsDistribution on setRewardDistribution() and

newRewardsDistributor on setNewRewardsDistributor()

• secureBlocks and perpetual.creationBlock use block as a part of their names, although theystore time information, based on the following snippet from PerpetualManagerInternal.sol line[54].
require (perpetual . creationBlock + secureBlocks <= block . timestamp ,

" invalid timestamp ");

The testing team recommends to use "timestamp" instead of "block"
4. Typo in PerpetualManager.sol line [282] FeeManagerù -> FeeManager

5. Variable uint256 does not have negative value in PerpetualManagerFront.sol

Function removeFromPerpetual() handles negative uint256 in line [216] when the zero case is suffi-cient.
if (cashOutAmount <= 0) {

Page | 53

Angle Protocol Detailed Findings

6. Lack of Information for Owner in forceCashOutPerpetual() in PerpetualManagerFront.sol

The function forceCashOutPerpetual() enables a keeper to force cashing out a perpetual identifiedby an ID. Upon cashing out, there is a possibility that the perpetual owner receives an amount of coinsbeing returned from the contract. There are two ways the system refund the perpetual owner, that is bytransferring in collateral tokens or converted into SLP token (sanToken) if the contract does not haveenough collateral token balance.
The testing team recommends emitting an event to let the perpetual owner know how they are refundedby the contract.

7. No Event for approve() and setApprovalForAll() in PerpetualManagerFront.sol

The functions approve() and setApprovalForAll() authorise a third-party to act on behalf of theperpetual owner. These functions modify the contract state but the transactions do not return any feed-back to the caller. Only when the caller calls the functions getApproved() and setApprovalForAll()respectively, that they know the transactions have been successful.
The testing team recommends introducing new events into both functions.

8. Variable naming consistency: rewardsDistribution or rewardsDistributor in
StakingRewards.sol

Both variables seem to refer to RewardsDistributor contract. Using a consistent term could be clearer.
9. Typos in PoolManager.sol

• line [126]: yous -> you
• line [149, 163]: transfered -> transferred

10. Wrong variable is emitted in event StrategyReported in PoolManager.sol

The event StrategyReported specifies address indexed strategy as the first variable. However, line
[348] in PoolManager.sol emits msg.sender , which should be strategy . Since this function can only
be called by a guardian or a governor with GUARDIAN_ROLE , then a Strategy contract cannot call thisfunction.

11. Unfinished sentence in OracleMulti.sol

There is an unfinished sentence in line [121], "... in case of"
12. Keyword immutable for unchangeable parameter

Keyword immutable can be used to ensure that a variable that holds contract parameter cannotbe changed beyond constructor. For example, contract OracleMulti has uniFinalCurrency and
outBase . The parameters are set only in the constructor, and hence can be treated as immutable .

13. Potential naming confusion in PoolManager.sol

PoolManager.StrategyParams.totalDebt is easily confused with PoolManager.totalDebt , considerchanging one or both names.
14. Inconsistent naming in OracleChainlinkSingle.sol

_chainIsMultiplied and isChainMultiplied are both used to represent the same values, considerchanging one or both names.
15. Potentially confusing comments in OracleMulti.sol

The comments "The current uni rate is in ‘outBase‘ we want our rate to all be in base" and "The current amount
is in ‘inBase‘ we want our rate to all be in base" on line [86] and line [88] respectively, the phrase "in base"mayeasily be confused with inBase .

Page | 54

Angle Protocol Detailed Findings

16. Repeated comments in Core.sol

The comments "/// @dev The ‘StableMaster‘ is initialized with the correct references"
on line [56] are essentially repeated on the following line.

17. Functions in StableMaster.sol under the wrong header
The functions accumulateInterest() and signalLoss() appear under the header "CONSTRUCTORS
AND DEPLOYERS" when they are SLP functions.

18. Use of the word "test" in production variable names
Consider renaming the function _testMaxCAmount() in PerpetualManagerInternal.sol to use "check"or "verify" instead of "test".

19. Inaccurate comments in OracleMath.sol

The comments "(token1/token0) * decimals(token1)" should be "(token1/token0) * base(token1)".
20. Simplification of equation in OracleMath.sol

line [74] rate = ((price * 1e18) / (1 « 59)); can be simplified to
rate = ((price * 1e18) » 59)); as a / (1 « x) = a » x .

21. Multiple fetches to _poolManager.stableMaster() in CollateralSettlerERC20.sol constructor

Multiple calls to _poolManager.stableMaster() may be cached in local variables to save gas. Addition-
ally, consider removing the parameter stableMaster , and instead fetching it from _poolManager , in theconstructor for mainnet deployment.

22. No incentive to call setAmountToRedistributeEach() in CollateralSettlerERC20.sol

The function setAmountToRedistributeEach() must be called to allocate the payable amount based onthe submitted claims by users, HA, and SLP. This function is callable by anyone. However, the caller doesnot receive incentive although the function call spends averagely 86,884 gas.
23. Unnecessary import in OracleMath.sol

The import import "@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol" is not re-quired and may be safely deleted.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

These findings have been acknowledged by the development team and actioned where appropriate.
The current actions are as follows:

1. Access control logic in AgToken contract was removed and therefore it is no longer applicable.
2. The revert message was corrected.
3. • feesWithdraw was replaced with feeWithdraw

• rewardDistributor was replaced with rewardDistribution

Page | 55

Angle Protocol Detailed Findings

• newRewardsDistributor was replaced with _rewardsDistribution

• The function was removed, so it is no longer applicable.
4. Fixed.
5. The cash out amount is now compared to 0 and the check was moved to checkLiquidation() .
6. Acknowledged and no changes were made. The owner can check through Transfer event.
7. Events were added.
8. rewardsDistribution is used instead of rewardsDistributor .
9. Fixed.

10. Event strategyReported on function withdrawFromStrategy() now emits strategy .
11. Fixed.
12. The keyword immutable was added whenever possible on non-upgradeable contracts.
13. StrategyParams.totalDebt was replaced with StrategyParams.totalStrategyDebt .
14. Fixed the related variable on OracleChainlinkSingle and OracleChainlinkMulti .
15. Fixed.
16. Fixed.
17. Fixed.
18. The function was removed so it is no longer relevant.
19. Fixed.
20. Recommendation applied.
21. Recommendation applied.
22. The development team assumes that the users will be motivated to call the function to receive collateralassets; or otherwise, the development team will call it. Alternatively, there can be an off-chain rewardmechanism.
23. Recommendation applied.

Page | 56

Angle Protocol Detailed Findings

AGL-35 Reentrancy When Closing Perpetuals
Asset PerpetualManagerFront.sol

Status Open

Rating Severity: Low Impact: Medium Likelihood: Low

Description

The function forceClosePerpetuals() can be runwhen the quantity of funds being hedged by hedging agents
has breached the limitHAHedge . This case occurs when enough users burn stablecoins, which may result inthe hedging agents over compensating for the remaining stablecoins.
When a perpetual is force closed there is an external call through _secureTransfer() on line [315] which will
call transferFrom() on the collateral token. The forceClosePerpetuals() continues to perform calcula-tions after the external call based off a combination of variables stored in state and memory, thus opening up apotential reentrancy vector.
Exploiting this reentrancy vector allows an attacker to bypass the estimatedCost and keeperFeesClosingCaplimits. These limits prevent users from earning more in fees than the cost of performing a flashloan attack.The reenterancy attack can be perform by reentering forceClosePerpetuals() multiple times which creates
parallel executions of cashing out the perpetuals. These parallel executions split the amount of cashOutFeesover each execution without changing the value for estimatedCost , thus avoiding the limits to the fees earned.
For this reentrancy to be viable the collateral ERC20 token must allow the attacker to gain control of executionduring transferFrom() . Most ERC20 tokens do not relinquish control of execution to a user, however somedo. One example is the ERC777 extension, which performs an execution call to the to address alerting theuser the funds have been transferred. An attacker could use this call to gain control of the execution and reenter
forceClosePerpetuals() .

Recommendations

We recommend performing all external calls after all calculations have been performed in accordance with theChecks-Effects-Interactions pattern.
This can be achieved by storing the (owner, netCashOutAmount) variables in an array and iterate through this
array calling _secureTransfer() after all calculations have been performed.

Page | 57

https://docs.soliditylang.org/en/v0.8.7/security-considerations.html#use-the-checks-effects-interactions-pattern

Angle Protocol Detailed Findings

AGL-36 Unnecessary Update of lastUpdateTime

Asset PerpetualManager.sol

Status Open

Rating Informational

Description

The variable lastUpdateTime in notifyRewardAmount() is written to twice without being read inbetween.
The variable is written to first on line [80] then again on line [99].
lastUpdateTime = _lastTimeRewardApplicable ();

if (block . timestamp >= periodFinish) {
// If the period is not done , then the reward rate changes
rewardRate = reward / rewardsDuration ;

} else {
uint256 remaining = periodFinish - block . timestamp ;
uint256 leftover = remaining * rewardRate ;
// If the period is not over , we compute the reward left and increase reward duration
rewardRate = (reward + leftover) / rewardsDuration ;

}
// Ensuring the provided reward amount is not more than the balance in the contract .
// This keeps the reward rate in the right range , preventing overflows due to
// very high values of ‘rewardRate ‘ in the earned and ‘rewardsPerToken ‘ functions ;
// Reward + leftover must be less than 2^256 / 10^18 to avoid overflow .
uint256 balance = rewardToken . balanceOf (address (this));

require (rewardRate <= balance / rewardsDuration , " reward too high");

lastUpdateTime = block . timestamp ;

Recommendations

line [80] lastUpdateTime = _lastTimeRewardApplicable(); may be safely removed.

Page | 58

Angle Protocol Detailed Findings

AGL-37 Reverts for Nonexistent Perpetuals in liquidatePerpetuals()

Asset PerpetualManagerFront.sol

Status Open

Rating Informational

Description

Perpetuals may be liquidated by users other than the owner in the function liquidatePerpetuals() when the
value falls below the maintenanceMargin . To save on gas perpetuals may be liquidated in batches by passingan array of IDs.
If one ID in the array perpetualIDs has already been liquidated (say by another user) the pereptual will beconsidered nonexistant and thus the transaction will revert, resulting in no liquidations.

Recommendations

Consider skipping any nonexistent perpetuals rather than reverting to reduce the likelihood of a liquidator’stransaction reverting.

Page | 59

Angle Protocol Detailed Findings

AGL-38 Gas Optimisation - Remove onlyOwnerOrApproved from addToPerpetual()

Asset PerpetualManagerFront.sol

Status Open

Rating Informational

Description

The function addToPerpetual() allows a user to increase their margin by transferring additional funds to theperpetual.
This function has the modifier onlyOwnerOrApproved which ensures the sender of the transaction has thepermissions required to add funds to this perpetual.

Recommendations

Since the function only allows adding funds to a perpetual, gas can be saved and bytecode size reduced byremoving this modifier and letting any user add funds to a perpetual.

Page | 60

Angle Protocol Detailed Findings

AGL-39 Miscellaneous AngleProtocol General Comments 2
Asset contracts/*

Status Open

Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security impli-cations:

1. Constructor allows empty governorList in RewardsDistributor.sol .

A governor plays an important role in RewardsDistributor . There are five functions that can only becalled by a governor. However, one can instantiate a RewardsDistributor contract without a governorby assigning an empty list to input variable governorList in the constructor.
The testing team recommends adding a check to ensure non-empty governorList .

2. Typo in the comments on PerpetualManagerInternal.sol on line [200].
The comment says "... the last timestep" which should say "timestamp".

3. Incorrectly named event in PerpetualManagerEvents.sol .

The event HAFeesUpdated has fields _xHAFeesDeposit and _yHAFeesDeposit although the function
PerpetualManager.setHAFees() allows to see the fees for both deposits and withdraws. Consider re-
naming these events too xHAFees and yHAFees to account for the withdraw case.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Page | 61

Angle Protocol Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are provided alongside thisdocument. The brownie framework was used to perform these tests and the output is given below.

test_constructor PASSED [0%]
test_setMinter_not_owner PASSED [0%]
test_setMinter_zero_address PASSED [1%]
test_setMinter PASSED [1%]
test_mint_not_minter PASSED [2%]
test_mint_exceed_minting_cap PASSED [2%]
test_mint PASSED [2%]
test_mint_newToken PASSED [3%]
test_transfer_approve_transferFrom PASSED [3%]
test_initialize_stableMaster_zero PASSED [4%]
test_initialize PASSED [4%]
test_initialize_twice PASSED [4%]
test_onyRole PASSED [5%]
test_mint PASSED [5%]
test_burnNoRedeem PASSED [6%]
test_burnNoRedeem_insufficient_balance PASSED [6%]
test_burnFromNoRedeem PASSED [6%]
test_burnFromNoRedeem_insufficient_balance PASSED [7%]
test_burnSelf PASSED [7%]
test_burnFrom PASSED [8%]
test_transfer_approve_transferFrom PASSED [8%]
test_deploy PASSED [8%]
test_buySoldToken PASSED [9%]
test_buySoldToken_amount_zero PASSED [9%]
test_buySoldToken_invalid_ag_token PASSED [10%]
test_recoverERC20 PASSED [10%]
test_allowNewStablecoin PASSED [11%]
test_allowNewStablecoin_invalid_reference PASSED [11%]
test_allowNewStablecoin_zero_address PASSED [11%]
test_allowNewStablecoin_two_references PASSED [12%]
test_allowNewStablecoin_without_oracle PASSED [12%]
test_changeOracle PASSED [13%]
test_changeOracle_zero_address PASSED [13%]
test_revokeStablecoin PASSED [13%]
test_changeStartPrice PASSED [14%]
test_changeStartPrice_zero PASSED [14%]
test_changeTokensToSell PASSED [15%]
test_changeTokensToSell_insufficient_balance PASSED [15%]
test_pausing PASSED [15%]
test_constructor PASSED [16%]
test_triggerSettlement_zero PASSED [16%]
test_triggerSettlement PASSED [17%]
test_claimUser_agToken_govToken PASSED [17%]
test_claimUser_govToken PASSED [17%]
test_claimHA PASSED [18%]
test_claimSLP_sanToken_govToken PASSED [18%]
test_claimSLP_sanToken PASSED [19%]
test_claimSLP_govToken PASSED [19%]
test_setAmountToRedistributeEach_noclaim PASSED [20%]
test_setAmountToRedistributeEach_claimUser_agToken_govToken PASSED [20%]
test_setAmountToRedistribute PASSED [20%]
test_constructor PASSED [21%]
test_deployStableMaster PASSED [21%]
test_deployStableMaster_redeploy PASSED [22%]
test_revokeStableMaster PASSED [22%]
test_addGovernor PASSED [22%]

Page | 62

Angle Protocol Test Suite

test_addGovernor_initialize PASSED [23%]
test_removeGovernor PASSED [23%]
test_setGuardian PASSED [24%]
test_revokeGuardian PASSED [24%]
test_getGovernorList PASSED [24%]
test_constructor PASSED [25%]
test_deployCollateral PASSED [25%]
test_updateUsersSLP_zero_mint PASSED [26%]
test_updateUsersSLP_mint PASSED [26%]
test_updateUsersSLP_mint_addToPerpetual PASSED [26%]
test_updateUsersSLP_mint_addToPerpetual_burn PASSED [27%]
test_updateUsersSLP_mint_addToPerpetual_cashOutPerpetual PASSED [27%]
test_setHAFees_updateHA PASSED [28%]
test_setFees PASSED [28%]
test_piecewiseLinear PASSED [28%]
test_checkCompatibleInputArrays PASSED [29%]
test_checkCompatibleFees PASSED [29%]
test_deploy PASSED [30%]
test_read PASSED [30%]
test_read_negative PASSED [31%]
test_readQuote PASSED [31%]
test_readQuoteLower PASSED [31%]
test_readAll PASSED [32%]
test_readLower PASSED [32%]
test_deploy PASSED [33%]
test_read_multiplied PASSED [33%]
test_read_divided PASSED [33%]
test_read_negative PASSED [34%]
test_readQuote PASSED [34%]
test_readAll PASSED [35%]
test_readLower PASSED [35%]
test_readQuoteLower PASSED [35%]
test_getRatioAtTick PASSED [36%]
test_getRatioAtTick_max_values PASSED [36%]
test_getQuoteAtTick PASSED [37%]
test_deploy PASSED [37%]
test_changeTwapPeriod PASSED [37%]
test_read PASSED [38%]
test_readAll PASSED [38%]
test_pause PASSED [39%]
test_onlyRewardsDistribution PASSED [39%]
test_notifyRewardAmount_insufficient_balance PASSED [40%]
test_notifyRewardAmount PASSED [40%]
test_notifyRewardAmount_usdc PASSED [40%]
test_recoverERC20_rewards_token PASSED [41%]
test_recoverERC20 PASSED [41%]
test_setNewRewardsDistribution PASSED [42%]
test_setFeeKeeper PASSED [42%]
test_pause_unpause PASSED [42%]
test_setRewardDistribution PASSED [43%]
test_setBaseURI PASSED [43%]
test_setLockTime PASSED [44%]
test_setBoundsPerpetual PASSED [44%]
test_setHAFees XFAIL [44%]
test_setTargetAndLimitHAHedge PASSED [45%]
test_setKeeperFeesLiquidationRatio PASSED [45%]
test_setKeeperFeesCap PASSED [46%]
test_setKeeperFeesClosing PASSED [46%]
test_setFeeManager PASSED [46%]
test_setOracle PASSED [47%]
test_openPerpetual PASSED [47%]
test_openPerpetual_zero_amounts PASSED [48%]
test_openPerpetual_leverage_too_high PASSED [48%]
test_openPerpetual_min_net_margin PASSED [48%]
test_openPerpetual_max_oracle_rate PASSED [49%]
test_openPerpetual_zero_owner PASSED [49%]
test_openPerpetual_over_target PASSED [50%]
test_openPerpetual_insufficient_funds PASSED [50%]
test_closePerpetual PASSED [51%]

Page | 63

Angle Protocol Test Suite

test_closePerpetual_price_decrease PASSED [51%]
test_closePerpetual_negative_position PASSED [51%]
test_closePerpetual_twice PASSED [52%]
test_closePerpetual_lock_time PASSED [52%]
test_closePerpetual_minCashOutAmount PASSED [53%]
test_onlyApprovedOrOwner PASSED [53%]
test_addToPerpetual PASSED [53%]
test_addToPerpetual_negative_position PASSED [54%]
test_removeFromPerpetual PASSED [54%]
test_removeFromPerpetual_amount_zero PASSED [55%]
test_removeFromPerpetual_negative_position PASSED [55%]
test_removeFromPerpetual_exceed_cash_out_amount PASSED [55%]
test_removeFromPerpetual_exceed_margin PASSED [56%]
test_removeFromPerpetual_maxLeverage_margin PASSED [56%]
test_removeFromPerpetual_maxLeverage_cashOutAmount PASSED [57%]
test_liquidatePerpetual PASSED [57%]
test_liquidatePerpetual_repeat_perpetual PASSED [57%]
test_liquidatePerpetual_negative_position PASSED [58%]
test_forceClosePerpetuals PASSED [58%]
test_forceClosePerpetuals_negative_position PASSED [59%]
test_getCashOutAmount PASSED [59%]
test_earned PASSED [60%]
test_getReward PASSED [60%]
test_ERC721_getters PASSED [60%]
test_ERC721 PASSED [61%]
test_initialize PASSED [61%]
test_deployCollateral PASSED [62%]
test_addGovernor_removeGovernor PASSED [62%]
test_addGovernor_nostrategy PASSED [62%]
test_removeGovernor_nostrategy PASSED [63%]
test_setGuardian_revokeGuardian PASSED [63%]
test_setGuardian_notGuardian PASSED [64%]
test_setFeeManager PASSED [64%]
test_estimatedAPR_none PASSED [64%]
test_estimatedAPR_strategy_zero_APR PASSED [65%]
test_updateStrategyDebtRatio PASSED [65%]
test_addStrategy_revokeStrategy PASSED [66%]
test_withdrawFromStrategy_zeroAmount PASSED [66%]
test_getBalance PASSED [66%]
test_getTotalAsset PASSED [67%]
test_creditAvailable PASSED [67%]
test_debtOutstanding_loan_not_taken PASSED [68%]
test_debtOutstanding_loan_taken PASSED [68%]
test_report_take_loan PASSED [68%]
test_report_gain PASSED [69%]
test_report_loss PASSED [69%]
test_report_payDebt PASSED [70%]
test_recoverERC20 PASSED [70%]
test_recoverERC20_overdraw PASSED [71%]
test_setStrategyEmergencyExit PASSED [71%]
test_constructor PASSED [71%]
test_constructor_no_governor PASSED [72%]
test_setStakingContract PASSED [72%]
test_drip_not_initialized PASSED [73%]
test_drip_too_soon PASSED [73%]
test_drip PASSED [73%]
test_governorWithdrawRewardToken PASSED [74%]
test_governorWithdrawRewardToken_not_governor PASSED [74%]
test_governorRecover PASSED [75%]
test_governorRecover_withdraw_rewards_token PASSED [75%]
test_governorRecover_staked_tokens PASSED [75%]
test_setNewRewardsDistributor PASSED [76%]
test_setNewRewardsDistributor_zero_address PASSED [76%]
test_removeStakingContract_not_initialized PASSED [77%]
test_removeStakingContract PASSED [77%]
test_setUpdateFrequency PASSED [77%]
test_setIncentiveAmount PASSED [78%]
test_setAmountToDistribute_not_initialized PASSED [78%]
test_setAmountToDistribute PASSED [79%]
test_setDuration PASSED [79%]

Page | 64

Angle Protocol Test Suite

test_initialize PASSED [80%]
test_mint PASSED [80%]
test_onlyStableMaster PASSED [80%]
test_burnNoRedeem PASSED [81%]
test_burnSelf PASSED [81%]
test_burnFrom PASSED [82%]
test_burnFrom_insufficient_allowance PASSED [82%]
test_transfer_approve_transferFrom PASSED [82%]
test_deploy PASSED [83%]
test_initialize PASSED [83%]
test_deploy_revoke_Collateral PASSED [84%]
test_add_remove_Governor PASSED [84%]
test_set_revoke_Guardian PASSED [84%]
test_contractMapCheck PASSED [85%]
test_pause_unpause PASSED [85%]
test_pause_invalid_role PASSED [86%]
test_setOracle PASSED [86%]
test_setFeeManager PASSED [86%]
test_setUserFees PASSED [87%]
test_getCollateralRatio_zero_mints PASSED [87%]
test_getCollateralRatio PASSED [88%]
test_getCollateralRatio_two_collaterals PASSED [88%]
test_setCore PASSED [88%]
test_mint_paused PASSED [89%]
test_mint PASSED [89%]
test_burn PASSED [90%]
test_burn_pause PASSED [90%]
test_deposit PASSED [91%]
test_withdraw PASSED [91%]
test_withdraw_paused PASSED [91%]
test_constructor PASSED [92%]
test_stake PASSED [92%]
test_stakeOnBehalf_zero_address PASSED [93%]
test_stakeOnBehalf PASSED [93%]
test_withdraw_nostake PASSED [93%]
test_exit_nostake PASSED [94%]
test_withdraw_zero_amount PASSED [94%]
test_withdraw PASSED [95%]
test_exit PASSED [95%]
test_notifyRewardAmount_no_rewards PASSED [95%]
test_notifyRewardAmount PASSED [96%]
test_getReward PASSED [96%]
test_recoverERC20_staking_token PASSED [97%]
test_recoverERC20_rewards_token PASSED [97%]
test_recoverERC20 PASSED [97%]
test_setNewRewardsDistribution PASSED [98%]
test_setNewRewardsDistribution_zeroAddress PASSED [98%]
test_setup_protocol PASSED [99%]
test_setup_BondingCurve PASSED [99%]
test_prerequisite_deployCollateral PASSED [100%]

Page | 65

Angle Protocol Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. Thetotal severity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.
html. [Accessed 2018].

[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].
[3] Sigma Prime. Solidity Security - Front Running. Blog, 2018, Available: https://blog.sigmaprime.io/

solidity-security.html#race-conditions. [Accessed 2018].
[4] NCC Group. DASP - Front Running. Website, 2018, Available: http://www.dasp.co/#item-7. [Accessed2018].

Page | 66

https://blog.sigmaprime.io/solidity-security.html
https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/
https://blog.sigmaprime.io/solidity-security.html#race-conditions
https://blog.sigmaprime.io/solidity-security.html#race-conditions
http://www.dasp.co/#item-7

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Amount Zeroed Before Use in recoverUnderlying()
	Potential Exploits from Guardian Role
	Potential Flashloan Attacks on sanRate
	Lost Funds When Calling addToPerpetual() with a Negative Asset Value
	setProportionalRatioGov() Potentially Not Called Before triggerSettlement()
	Claim Collateral on Behalf of HAs
	Incorrectly Handled Edge Case in _computeDripAmount()
	Revoked StableMaster May be Deployed A Second Time
	Potential Overflows in BondingCurve
	setGuardian() May Overwrite Itself
	Circumvention of Maintenance Margin
	_computeDripAmount() is Non Linear in its Distribution
	Potential Accumulation of Interests After Calling signalLoss()
	Integer Overflow in revokeStableMaster()
	Governor Must Be a Contract
	Suboptimal Search Iteration
	Suboptimal Delete Iteration
	Duplicate Oracle Allowed on setOracle()
	Identical newFeeManager & oldFeeManager Allowed in setFeeManager()
	Integer Overflow on Empty List in onlyCompatibleInputArrays
	Integer Overflow in removeStakingContract()
	Calling updateHA() inside setHAFees()
	Revert When No Strategy
	Emit Then Update on addStrategy()
	Core Does not Need to be Initializable
	Initialisation of Proxy Implementations
	Purchase of Zero Tokens from BondingCurve
	TWAP Period May be Set to Zero
	Additional Constructor Checks
	Event ReferenceCoinChanged is Unused
	Front-Runnable Functions
	Draft OpenZeppelin Dependencies
	Reduce SLOAD Instructions when Reading Storage
	Miscellaneous AngleProtocol General Comments
	Reentrancy When Closing Perpetuals
	Unnecessary Update of lastUpdateTime
	Reverts for Nonexistent Perpetuals in liquidatePerpetuals()
	Gas Optimisation - Remove onlyOwnerOrApproved from addToPerpetual()
	Miscellaneous AngleProtocol General Comments 2

	Test Suite
	Vulnerability Severity Classification

