PUBLIC

Code Assessment

of the Angle Borrowing Module

Smart Contracts

May 17, 2022

Produced for

M Angle

by

(S: CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o b~ WDN P

Notes

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG

10
11
12
15
24

https://chainsecurity.com

1 Executive Summary

Dear Angle Team,

Thank you for trusting us to help Angle with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Angle Borrowing Module
according to Scope to support you in forming an opinion on their security risks.

Angle implements a new way to borrow Angle's stable token agEUR by using over-collateralized loans
with liquidation mechanism.

The most critical issue uncovered in our audit is a call to an untrusted address. The amount of issues
uncovered are usual for a project of this size. The documentation of the project is good and the
communication with the team was very professional. All issues were fixed accordingly or (in case of some
low severity issues) acknowledged.

In summary, we find that the codebase provides a good level of security. It is important to note that
security audits are time-boxed and cannot uncover all vulnerabilities. They complement but don't replace
other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings 1

N co:e conestsn) 1
CIZ)-Severity Findings 0
(Medium)-Severity Findings 3

N Gisicasiis) 3
(Low)-Severity Findings 20

N co:e conestsn) 1

Y Specification Changed 5

W Acknowidged! 4
@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the following source code files inside the Angle Borrowing Module
repository based on the documentation files.

* AgToken. sol

« Cor eBor r ow. sol

* Fl ashAngl e. sol

e BaseOr acl eChai nl i nkMul ti . sol
* O acl eWSTETHEURChai nl i nk. sol
* BaseReact or. sol

* BaseReact or St or age. sol

e Treasury. sol

*Vaul t Manager . sol

* Vaul t Manager ERC721. sol

«Vaul t Manager St or age. sol

The table below indicates the code versions relevant to this report and when they were received.

V | Date Commit Hash Note

1 | 04 Apr 2022 d522f132bb7a814a066bdcc9ad518c2934ba7hbe8 Initial Version
2 | 09 May 2022 11dd806015eef3c24de62fd56ea394e4f481e8e8 Version 2

3 | 16 May 2022 0363b6al37a44e22ee06b3187ba74f7798c1laf08 Version 3

For the solidity smart contracts, the compiler version 0. 8. 12 was chosen.

2.1.1 Excluded from scope

All other files were excluded from scope and not audited. The economic model behind the protocol and
the chosen economic parameters of the system are out of scope. Furthermore, the contract
Set t | enment is out of scope, hence the shutdown process is excluded from scope of this review.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Angle offers users to lend stable coins. To lend stable coins users need to deposit collateral tokens worth
more than the stable coin loan (over-collateralized). In case the value of the collateral falls below a
defined threshold the collateral is sold with a discount to liquidators against the stable coin. In case of
under-collateralized loans (bad loans) an inbuilt insurance mechanism tries to cover the losses. The
insurance funds build up by taking certain fees. The system has two additional components: (1) First, it
offers users flash loans denominated in the stable coin and (2) it offers the ability to get a stable coin loan
which is automatically invested into yield earning strategies. The funds are always managed by the
system and not accessible by the investor. The system tries to balance the loan in such a way that it
should not default.

The system charges a fee on minting, a stability fee on the loan as kind of interest and a liquidation
surcharge in case of liquidations.

2.2.1 System Setup

The system has a centralized contract (Cor eBorr ow) to manage all access rights and permissions.
There are three types of users. The first type uses the system to simply borrow agEUR tokens against a
collateral. These investors will use the Vaul t Manager as primary interaction contract. The second type
might be an investor (e.g., a DAO) owning certain tokens that want to invest and earn a yield on their
funds. These kind of investors will use the r eact or contract which tries to manage their investment and
balance the loan in a way that a liquidation is unlikely. The third kind of investors use the Fl ashLoan
contract to borrow a flash loan in agEUR tokens.

There is one Vaul t Manager, Settl enment and React or contract per collateral type for a given
stablecoin, one treasury overseeing the Vaul t Manager contracts per stablecoin. One Fl ashLoan
contract manages the flash loans of all different stable coins. Each system on a chain needs additionally
oracle contracts and one Swapper contract as well as the respective stable coin.

The following contacts are upgradable AgToken, Cor eBorr ow, Fl ashAngl e, React or, Treasury,
Vaul t Manager. To ensure a consistent access/permission model managed by the Cor eBorr ow
contract, the admin privileges need to be kept in line with the upgradable contracts and the Cor eBor r ow
contract.

2.2.2 Core borrow

The Cor eBor r ow contract is the contract responsible for handling the access control across all the
borrowing modules and is read by all Tr easury contracts belonging to a certain stable coin. The role
definitions are built upon OpenZeppelin's AccessCont r ol Enuner abl e contract. By default, there are a
GUARDI AN_ROLE, GOVERNCOR_ROLE and a FLASHLOANER TREASURY_ROLE role managed by the
contract. An emergency function to check consistent roles in a newly deployed core contract, the
set Cor e function could be used to update the Fl ashLoan contract's core contract. Similarly, the
Fl ashLoan contract can be update in the core contract via set FIl ashLoanModul e

The contract is deployed with proxy contract.

2.2.3 Treasury

The treasury contract keeps the accounting for all vault managers and flash loan contracts given a stable
coin. It aggregates the profits and losses from the vault managers. Each Treasury contract has the ability
to grant minting rights on its associated AgToken: it is hence the contract granting permissions to each
new Vaul t Manager . A share of the profits can be transferred to a surplus manager contract. Most
functions are accounting functions that rely on being called to keep the accounting up to date. These
functions could be called by anyone to keep the accounting up to date and collect potential profits:

o f et chSur pl usFromAl | to collect profits from flash loan and vault manager contracts or account
for losses.

 f et chSur pl usFr onFl ashLoan to only collect from flash loan contracts or account for losses.

« f et chSur pl usFr onvaul t Manager s to only collect from vault managers or account for losses.

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

e pushSur pl us transfer part of the profits to the ANGLE's surplus management contract.

« updat eBadDebt burns agEUR to balance out losses (bad debt).

Additionally, the contract offers the following governor permissioned functions:

«addM nter and renoveM nter to add or remove an account as minter to the stable coin
(ageUR).

e addVaul t Manager and r enpoveVaul t Manager to add or remove a vault manager from the
treasury contract.

* r ecover ERC20 to transfer any ERC20 tokens out of the contract.

eset Treasury to set a new treasury contract in all associated vault managers and the stable coin
contract.

e set Sur pl usFor Gover nance sets the relative amount that can be withdrawn by the governance to
the surplus manager address.

e set Sur pl usManager sets the address that will receive the surplus amount when withdrawn.
* set Cor e sets the core contract for access management.

* set Fl ashLoanMbdul e sets the flash loan contract for this treasury.

2.2.4 Vault Manager

The vault manager creates new vaults by minting an NFT and storing the vault specific parameters. In

a fee is charged when borrowing, while in fees can be charged when borrowing,
repaying, or in both actions. Via the angl e function, it offers the main functionality of the protocol for

users taking out ageUR loans:
« creating a vault (minting the vault NFT).
« adding collateral or removing it as long as the vault remains healthy.
* approving the collateral to the VaultManager via perm t .
* borrow and repay debt.
« transfer debt between two vaults via get Debt | n.

« liquidate vaults (for keepers that monitor the health status).

Each Vaul t Manager contract implements the ERC-721 standard and, hence, has the corresponding
functionality.

Furthermore, the contract implements some admin functionality:
« setter to set the liquidation booster parameters.
« toggle function to turn on or off if the receiver of a mint or transfer of a vault needs to be whitelisted.
« toggle the whitelisting of a user account (in case whitelisting would be needed).
« setter for the oracle contract to query the price information.
« setter to set the treasury contract overseeing the vault.

« toggle function to pause the functions: angl e, creat eVaul t and | i qui dat e.

The contract has minting right on its corresponding AgToken.

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.5 Reactor Contract

At the time of the audit, only one example of a reactor contract was present. The Euler reactor allows to
borrow agEUR and manages the investment in Euler finance. It provides functionality on top of the vault
manager. The contract tries to avoid liquidations as it is in full control of the borrowed stable coins and
they are not accessible by the investing users. The user might access the returns generated or close the
investment to get the collateral back. The contract offers the following main functionality:

e deposit and mi nt for a user to deposit collateral in the strategy.
*wi t hdrawand r edeemfor a user to redeem collateral from the strategy.

« cl ai mto cl ai mstablecoin rewards accruing from the strategy.

2.2.6 Flash Loan Contract

The Fl ashAngl e contract is the flash loan contract to flash loan Angle's stable token ageUR (and
eventually others in the future). The module needs minting permissions for each token contract and
checks after the flash loan that the borrowed tokens plus fees are transferred back and the borrowed
amount is burned again.

The main function for this functionality is f | ashLoan. Additionally, the contract has the permissioned
(Governor or Guardian) setter set Fl ashLoanPar anet er s for the flash loan's parameters (maximum
amount to be borrowed and flash loan fee), the function accr uel nt er est ToTr easury to transfer the
surplus to the treasury of a particular stable coin. The functions:

«addSt abl ecoi nSupport and r enoveSt abl ecoi nSupport allows the core borrow contract (set
at initialization or via set Cor e) to add a treasury and stable coin to the flash loan contract and
remove it. The function can only be called by the governor role from the core borrow contract.

* set Cor e sets a new core contract and is restricted to be called from the old core borrow contract.
Only governance is allowed to call the function to trigger the change in the old core borrow contract.

2.2.7 The Stable Coin Token Contract

The token contract is an extended standard ERC20 token contract based on OpenZeppelin's
ERC20Per mi t Upgr adeabl e. It is mintable and burnable. The following additional functions support the
individual system setup and extend the functionality.

* bur nNoRedeem bur nFr omNoRedeemand bur nSt abl ecoi n are different ways to burn the stable
tokens a user borrowed. Depending on which option is chosen the collateral is redeemed or remains
as debt.

e burnSel f, burnFromand mi nt are functions that can be called by addresses having the minuter
role. The functions burn and mint stable tokens.

«addM nt er allows the governor role to add a minter via the treasury contract.

e renoveM nt er can either be called by the governance via the treasury contract to remove a minter
(except for the stable minter) or the minter themselves can call it to remove themselves.

e set Treasury allows to set a new treasury address for the stable coin. It can only be called by the
governor via the old treasury contract.

2.2.8 Swapper Contract

The swapper contract Swapper allows to swap tokens by caling swap. The function
changeAl | owance lets the governor or guardian role set an amount of stable tokens to be spend by a
spender.

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

2.2.9 Oracle Contracts

These contracts are used to query the price information from Chainlink. The Chainlink oracles are
assumed to behave correctly and non-maliciously. The contract performs sanity checks for the freshness
of prices reported by oracles and reverts if the price is outdated.

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CEEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings 0

ty g

(C)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings 4
ty g

« Approximated Fee Charged in Debt Transfer(_ =)
« Ignored Return Value of _repayDebt()

» Possible Gas Optimization in Mappings(_)
» Unchecked Collateral Amount ()

5.1 Approximated Fee Charged in Debt Transfer
[Low] [Version 1)[]

In function vaul t Manager . get Debt Qut , a fee is charged according to the different bor r owfee and
repayFee between two vault managers. It will be an approximation which slightly round if both
bor r owFee and r epayFee are enabled.

We assume the bor r owFee and r epayFee are f 1 and r 1 on vaults A. And f 1 and r 1 for B as well. We
assume f 1<f 2 and r 1>r 2. Then if a debt X is transferred from A to B, the following fee will be charged.
I I
bfee = (f2 - fl) *X+ (Tlrl - ﬁ) * X

ofee = [(f, — fi) + (a7)| * X > = (6f + 6r) * X

where
of= f2 - f]_
or=r—n;
This is slightly larger than the formula used in the project given that both f and r are small:
Ofee = (6f+ 6r— 6r*6f) * X

Acknowledged
Angle replied:
It is possible that it slightly rounds down, overall we do not expect to

have both fees taken up at the same tinme on the sane vaul t Manager.
And as we're aware that it's an approximati on, fees should be set accordingly.

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5.2 Ignored Return Value of _repayDebt
[Low] [Version 1][]

The return value of the call to _r epayDebt in the function Vaul t Manager . | i qui dat e is ignored,
although it gives the correct amount of stable coins that need to be burned for the debt payment. Instead
amount s[i] is used, as shown below:

if (vault.coll ateral Anbunt col | ateral Rel eased) {
} else {
_repayDebt (
vaul tI Ds[i],
(amounts|i | I i qui dati onSur char ge) BASE PARANS,
| i gDat a. newl nt er est Accunul at or
);
}
| i gDat a. st abl ecoi nAmount ToRecei ve anounts[i|;

Acknowledged
Angle replied:

The repayDebt function rounds down the stablecoin amount in the case where it is
bi gger than the total debt of the vault. In a liquidation setting, the amount in
repayDebt is: 'amounts[i]*|iquidationSurcharge / BASE PARAMS' where

"anount s[i] <=maxSt abl ecoi nAnount ToRepay' and

" maxSt abl ecoi nAnount ToRepay <= debt of the vault + 1'. As such, in the worse
scenari o possible, the output value of the repayDebt function will very slightly
be rounded down from what should theoretically be taken: we should therefore view
this as a slightly higher fee taken by the protocol on the |iquidation

5.3 Possible Gas Optimization in Mappings
[Low][Version 1][]

Several contracts of the system use mappings in the format: mapping(key_type => bool). Solidity uses a
word (256 bits) for each stored value and performs some additional operations when operating bool
values (due to masking). Therefore, using uint instead of bool is slightly more efficient. A list of such

mappings:

i sM nter inagToken.
evaul t Manager Map in Tr easury.
i sWiitelistedand operatorApproval s inVaul t Manager St or age.

Acknowledged:

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

The mappings vaul t Manager Map, i sWi tel i sted and _oper at or Appr oval s have been modified
and now use ui nt 256 instead of bool as pointed out above.

Only the mapping i sM nt er remains unchanged because the Angle has already deployed a version of
the contract.

5.4 Unchecked Collateral Amount
[Low] [Version 1][]

In the contract Vaul t Manager, when a user calls _addCol | ateral or _renmpoveCol |l ateral, no
checks are performed on the collateral amount. Hence, a vault can have an amount of collateral which is
below the _dust Col | at er al parameter.

Acknowledged

Angle replied:

There is no need to check for the ' _dustCollateral” paranmeter when people are adding or renoving
collateral fromtheir vault. What is inportant is that people with a debt have an anmpbunt of collateral
in their vault which is higher than " _dustCollateral ™ and this can be for sure inplemented if *_dust’

paranmeter is set accordingly with the “collateral Factor® paranmeter and the ~_dustCol |l ateral = paraneter.

It is not a problemfor the protocol if people decide to add collateral little by little or renove
their collateral little by little if they are no longer in debt or their debt is small.

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

S{liEl)-Severity Findings 1
y g
» Unchecked VaultManager Address

(C)-Severity Findings 0

(Medium)-Severity Findings 3
« Inconsistent Access Control (eI)
* Incorrect Accounting of Global Debt (S L)

« Stuck Ether

(Low)-Severity Findings 16
« Incomplete Specifications BaseReactor
« Mismatch of Specifications in _repayDebt
» Unclear Specifications for Swap Function
« Incomplete Specifications
« Inconsistent Error Message
* Misleading Function Name
« Mismatch of Specifications for Function _isSolvent
« Missing Description of Variable Decimals
» Missing Sanity Checks on Vault Creation
« No Event Emitted on Flashloan's Parameters Update
» Possible to Optimize Struct
» Precision Loss in Division
« Specification Mismatch in _handleRepay
« Specification Mismatch setUint64

« Unchecked Array Length
» Unchecked VaultiD When Adding Collateral

6.1 Unchecked VaultManager Address

The fetchSurpl usFronvaul t Managers function is an external function of the contract
treasury/ Treasury. sol, as displayed below, there is no check towards the user input
Vaul t Manager address. An adversary can deploy a contract with a function
accruel nterest ToTreasury which can return arbitrary numbers to maliciously update the state
variables sur pl usBuf f er Val ue and badDebt Val ue.

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

function fetchSurpl usFronVaul t Manager s(address[] nenory vaul t Managers) external returns (uint256, uint256) {
(uint256 surplusBufferVal ue, uint256 badDebt Val ue) _fetchSurpl usFronii st (vaul t Managers) ;
return _updat eSur pl usAndBadDebt (sur pl usBuf f er Val ue, badDebt Val ue) ;

}

function _fetchSurpl usFroniist(address[] nenory vaul t Managers) internal returns (uint256 surplusBufferValue, uint256 badDebt Val ue) {
badDebt Val ue = badDebt ;
sur pl usBuf f er Val ue surpl usBuf fer;
ui nt 256 newSur pl us;
ui nt 256 newBadDebt ;

for (uint256 i 0; i vaul t Managers. | ength; i++) {
(newSur pl us, newBadDebt) | Vaul t Manager (vaul t Managers[i |). accruel nterest ToTreasury();
sur pl usBuf f er Val ue newSur pl us;

badDebt Val ue newBadDebt ;

Code corrected:

The vulnerable function f et chSur pl usFr onivaul t Manager s has been removed from the updated
code. Hence, the functionality to collect the surplus only from a subset of vault managers is not available
anymore. In order to collect the surplus accrued by all Vaul t Manager contracts, function
f et chSur pl usFromAl | should be called.

6.2 Inconsistent Access Control

(D (Vidium) (Version 1) CXEIED

The setup of roles for the contract Cor eBor r owis implemented in the functioni ni ti al i ze. The admin
of the GUARDI AN_RCLE is set to GUARDI AN _RCLE, which may lead to an exploit as a malicious guardian
can remove all governors from the GUARDI AN _ROLE. In such scenario, the functions addGover nor,
i sGover nor Or Guar di an, and all the functions in other contracts that call i sGover nor O Guar di an
with a governor address would revert, as they no longer have the GUARDI AN _ROLE, and thus are no
longer the admin of the GUARDI AN_ROLE.

function initialize(address governor, address guardian) public initializer {
requi re(gover nor address(0) && guardi an address(0), "O');
requi re(gover nor guardi an, "12");
_set upRol e(GOVERNOR_RCLE, governor) ;
_setupRol e(GUARDI AN RCLE, guardi an);
_set upRol e(GUARDI AN_RCLE, governor);
_set Rol eAdmi n(GUARDI AN ROLE, GUARDI AN ROLE) ;
_set Rol eAdni n(FLASHLOANER _TREASURY_ROLE, GOVERNOR_ROLE) ;

}

functi on addGover nor (address governor) external {
gr ant Rol e(GOVERNOR_ROLE, governor) ;
gr ant Rol e(GUARDI AN_RCLE, governor) ;

}

function isGovernor O Guardi an(address adm n) external view returns (bool) {
return hasRol e(GUARDI AN_RCOLE, adnin);

}

Code corrected:

The issue has been addressed in code (Version2) the governor is set as the admin of the
GUARDI AN_ROLE, hence a guardian cannot change anymore the roles of a governor address.

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

Furthermore, the function r enoveGover nor has been updated to allow a governor address to remove
its roles, i.e., revoke its roles as guardian and then as governor.

6.3 Incorrect Accounting of Global Debt

[Medium] [Version 1] Code Corrected

The following issue was reported by Angle during the review process. The function _cl oseVaul t in the
contract Vaul t Manager . sol does not update the global debt state variable t ot al Nor mal i zedDebt .

Code corrected:

The function _cl oseVaul t has been revised to update the global debt state when a vault is closed:
total Normal i zedDebt -= vault.normalizedDebt ;.

6.4 Stuck Ether
DD (Viedium) (Version 1) (RXIXITET)

The function angl e in the contract Vaul t Manager is declared as payabl e, however the code has no
logic to deal with the incoming Ether. Therefore, the Ether sent when calling the function angl e is not
accounted and gets stuck into the contract.

Code corrected:

The keyword payabl e has been removed from the function Vaul t Manager . angl e, hence users
cannot send Ether to the contract when calling this function.

6.5 Incomplete Specifications BaseReact or

(Correctness JITIWERRTIRY Code Corrected)

The parameter _pr ot ocol | nt er est Shar e in BaseReactor. _initialize is missing the NatSpec
description.

Code corrected:

The NatSpec description has been added for the parameter _pr ot ocol | nt er est Shar e in the function
_initialize.

6.6 Mismatch of Specifications in _repayDebt
D (Low) (Version 2) CIYIEEED)

The function Vaul t Manager . _r epayDebt will not revert on a non-existing vault, however the NatSpec
comments assume that it will revert.

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Code corrected:
The sentence above has been removed from the NatSpec of the function _r epayDebt .

6.7 Unclear Specifications for Swap Function

(Coreectness W Code Corrected)

The NatSpec descriptions for parameters in | Swapper . swap are confusing, for example the parameter
out TokenOned has the following description:

@ar am out TokenOred M ni mum anount of out Token this address should have at the end of the call

It is unclear if this address refers to the contract Swap or to the recipient address.

Code corrected:
The NatSpec description for the parameter out TokenOwed has been revised:

@ar am out TokenOaed M ni mum anount of out Token the " out TokenReci pi ent” address should have at the end of the call.

6.8 Incomplete Specifications

[Low] [Version 1] Specification Changed

Several NatSpec descriptions for the function parameters are not complete. We provide a
non-exhaustive list:

» The description of " data™ in Vaul t Manager . | i qui dat e.
esuppl y in BaseReact or. _convert ToShar es.

* Return values in BaseReact or . _get Fut ur eDebt AndCF.

Specification changed:
The NatSpec descirptions have been added for the examples listed above:

/1l @aramdata Data to pass to the repaynent contract in case of...

/1l @aram _supply Optional value of the total supply of the reactor, it is reconputed if zero

/1] @eturn futureStabl ecoinslnVault Future anount of stablecoins borrowed in the vault

Il @eturn collateral Factor Collateral factor of the vault if its debt remains unchanged but “toWthdraw collateral

6.9 Inconsistent Error Message

(D (Low) (Version 1) ISR

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

The error codes in nodifier onlyTreasury in BaseAgTokenSi deChain.sol and
function set Treasury in BaseO acl eChai nl i nkMul ti . sol are inconsistent with the respective
descriptions in er r or Messages. j son.

Furthermore, most of the contracts use numbers as error messages, and the file errorMessages.json
maps each error code to a meaningful description. However, in BaseReact or the following messages
are used:

require((assets = _convert ToAssets(shares, usedAssets | ooseAssets, 0)) 0, "ZERO ASSETS");
require(current Al l owance shares, "ERC20: transfer anount exceeds al |l owance");

Code corrected:

The error messages have been revised on the whole codebase and a new approach is used:

if(!condition) revert CustonkrrorMssage();

6.10 Misleading Function Name

(Coreectness JICTEEBY Code Corrected)

In contract Eul er React or. sol, the function name _rmaxSt abl ecoi nsAvai | abl e does not match
with the specifications and the code, which returns the maximum amount of assets that can be
withdrawn.

Code corrected:

The function _maxSt abl ecoi nsAvai | abl e has been renamed to _nmaxAnount W t hdr awabl e, and
the NatSpec description has been updated accordingly:

@ et urn maxAnmount Max anmpbunt of assets that can be withdrawn fromthe reactor
considering Euler liquidity for the stablecoin.

6.11 Mismatch of Specifications for Function
_isSolvent

[Low] [Version 1) Specification Changed

The NatSpec comment for the function Vaul t Manager . i sSol vent states:

/1l @notice Verifies whether a given vault is solvent (i.e., should be |iquidated or not)

/1l @ev If the oracle value or the interest rate accunul ator has not been called at the tine of the
/1l call, this function conputes it

The first sentence above states that the function veri f i es if the vault is solvent, however the function
does not verify the vault status, but only computes some parameters.

The second sentence above states that the function computes the interest rate accumulator if it has not
been called before, however the implementation does not perform it.

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 19

https://developers.angle.money/governance-and-cross-module-contracts/common-modules#error-messages
https://chainsecurity.com

Specification changed:
The NatSpec descriptions have been revised to reflect the behavior of the function implementation:

/1] @otice Conputes the health factor of a given vault. This can later be used to check whether a given vault is solvent

6.12 Missing Description of Variable Decimals

[Low] [Version 1] Specification Changed

The documentation pages state that the codebase generally uses three bases: BASE TOKENS (18
decimals), BASE PARANMS (9 decimals) and BASE | NTEREST (27 decimals). However, to improve
readability and integrations with other systems, the code would benefit from having a description of the
expected base for each variable.

Specification changed:

The NatSpec descirption for Vaul t Manager St or age. BASE_PARAMS states that unless specified
otherwise all the parameters are in 9 decimals:

/11 @notice Base used for paraneter conputation: alnmpbst all the paraneters of this contract are set in ~BASE_PARAMS

6.13 Missing Sanity Checks on Vault Creation
(7D (Low) (Version 1) CXSIZET)

The function Vaul t Manager . angl e does not perform any sanity check on vault creation for the
parameter t 0, which is the owner of the vault.

Code corrected:

The sanity check to prevent vaults being minted to addr ess(0) has been added into the function
Vaul t Manager ERC721. _m nt:

if (to address(0)) revert ZeroAddress();

6.14 No Event Emitted on Flashloan's Parameters
Update
7DD (Low) (Version 1) (CXISIEED)

The function Fl ashAngl e. set Fl ashLoanPar anet er s updates the fee and the maximum amount
that can be borrowed by the module; however, no event is emitted.

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 20

https://developers.angle.money/governance-and-cross-module-contracts/common-modules
https://chainsecurity.com

Code corrected:
The following event will be triggered every time the function is successfully called.

event Fl ashLoanPar anet er sUpdat ed(| AgToken i ndexed stabl ecoin, uint64 _flashLoanFee, uint256 _nmaxBorrowabl e);

em t Fl ashLoanPar anet er sUpdat ed(st abl ecoi n, _flashLoanFee, _maxBorrowabl e);

6.15 Possible to Optimize Struct
D) (Low) (Version 1) TN

The struct FI ashAngl e. St abl ecoi nDat a can be optimized to occupy 2 storage slots instead of 3 if
reordered.

Code corrected:
The struct is reordered to occupy 2 storage slots.

struct Stabl ecoi nData {
ui nt 256 maxBor r owabl e;
ui nt 64 fl ashLoanFee;
address treasury;

6.16 Precision Loss in Division

(D (Cow) (Version 1) G

This line below from the function _checkLi qui dat i on of contract Vaul t Manager . sol uses division,
which is prone to rounding errors. In this case it is possible to use multiplication as needed to have both
sides of the comparison operator in the same decimals instead of using division.

i f (current Debt (maxArmount ToRepay sur char ge) BASE_PARAMS + dust)

Code corrected:

The updated code avoids the division operator and evaluates the condition as follows:
i (current Debt BASE_PARAMS maxAnmount ToRepay sur char ge dust BASE _PARAMS) {

}

6.17 Specification Mismatch in _handleRepay
(Correctness | SOIZETSY] Specification Changed)

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

The NatSpec description for the parameter t o in Vaul t Manager . _handl eRepay states:
@aramto Address to which stabl ecoins should be sent
However, the function only sends collateral tokens to the address t o:

i f (coll ateral Anount ToG ve 0)
col l ateral . safeTransfer(to, coll ateral Anbunt Tod ve);

Specification changed:

The NatSpec comments has been updated:

@aramto Address to which collateral should be sent

6.18 Specification Mismatch setUint64
(Correctness J(ET)IZETT Specification Changed)

The function set Ui nt64 in the contract Vaul t Manager. sol is protected with the modifier
onl yGover nor Or Guar di an, however, in the specification, it says When setting parameters
governance should make sure The Angle team should assess and clarify the intended behaviour and
update the specification or the modifier accordingly.

Specification changed:

The specification is changed to comply with the modifier:

/1]l @ev When setting paranmeters governance or the guardi an should nake sure that...

6.19 Unchecked Array Length
(Design [(FTVEETTB] Code Corrected

The function angl e in the contract Vaul t Manager does not check if the input arrays acti ons and
dat as have the same length and trigger an early revert if the input parameters do not match, thus be
more gas efficient.

Code corrected:

The updated code performs a check that arrays actions and datas have the same length.
Furthermore, it also checks that the arrays have a non-zero length:

if (actions.length datas.length || actions.length 0)
revert | nconpati bl eLengt hs();

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

6.20 Unchecked VaultID When Adding Collateral
D) (Low) (Version 1) (XTI

The function angl e does not perform any check to verify if a vault exists when the action is
addCol | at er al . The internal function _addCol | at er al also does not perform such checks, hence it
is possible to add collateral to vaults that are not created yet, or to vaults that have been burned, i.e.,
locking tokens.

Code corrected:

The function _addCol | at eral has been updated to check if the collateral is being added into an
existing vault:

if (! _exists(vaultlD)) revert NonexistentVault();

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Default VaultIiD Value

The function angl e in the contract vaul t Manager / Vaul t Manager . sol will use the latest vaul t | Dif
the action's parameter vaul t | D is 0. Users should be aware of this default behavior and be careful to
use vaul t I D = 0 only when the first action of a batch operations is cr eat eVaul t .

7.2 Dependency on Freshness of Chainlink Oracle
Prices

The Angle Borrowing Module queries Chainlink oracles to get the price of an asset and the function
_readChai nl i nkFeed performs the following sanity checks:

(uint80 roundld, int256 ratio, , uint256 updatedAt, uint80 answeredl nRound)
feed. | at est RoundDat a() ;
if (ratio 0
|| roundld answer edl nRound
|| bl ock.tinmestanp updat edAt st al ePeri od)
revert InvalidChainlinkRate();

If the price is carried over from an old round (answer edl nRound < roundl D), or the price is outdated
(bl ock. timestanp - updatedAt > stal ePeri od), then the function reverts. Therefore, actions
that query oracles cannot be executed if the returned price do not pass the sanity checks, e.g.,
cl oseVault, renoveCollateral, borrow, getDebtln, |iquidate. This might become
problematic for the system if Chainlink oracles stop working at any point in future for collateral assets.

7.3 Event MinterToggled Can Be Emitted Multiple
Times

(D) (Version 1)

In contract AgToken. sol, functions addM nter and renoveM nter will always emit a
M nt er Toggl ed event without checking if the minter has already been added or removed.

7.4 Inconsistency Between Debt and Issued
Stable Coins
(D) (Version 1

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

When a user wants to transfer debt from VaultManager B to VaultManager A, the function angl e in the
contract Vaul t Manager . sol does not check if VaultManager B is a valid VaultManager. If a user
deploys a contract with the VaultManager interface and set its address as B, then the debt of the user
increases without issuing any stable coins.

7.5 Repay Fee Calculation
(D) (Version 2

The repay fee in the function Vaul t Manager . angl e is calculated with the following code:

ui nt 256 st abl ecoi nAnbunt Pl usRepayFee (st abl ecoi nAnpunt BASE_PARANMS) (BASE_PARANS repayFee) ;

If the user wants to repay 100 USDC when the repay fee is 3% the formula above will calculate
103. 0927835052 USDC as the total amount needed to be repaid.

7.6 System Inconsistency

(D) (Version T

In contract AgToken. sol , functions bur nNoRedeemand bur nFr onNoRedeemburn the stable tokens
and interact with | St abl eMast er which is not part of the borrowing module reviewed in this audit.
Users of the borrowing module have no incentive to call these functions.

7.7 Unbounded Loops in Treasury Contract

(D) (Version 2

Functions set Treasury, fetchSurplusFronii st and renpoveVaul t Manager loop through the
array vaul t Manager Li st . However, there are no bounds on the size of the array, which means there is
a possibility that the transaction exceeds the block gas limit. In those cases, the transaction will revert.
Hence, the governance should ensure that the number of entries in vaul t Manager Li st is limited so
the transaction cost remains under the block gas limit.

@ Angle - Angle Borrowing Module - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 System Setup
	2.2.2 Core borrow
	2.2.3 Treasury
	2.2.4 Vault Manager
	2.2.5 Reactor Contract
	2.2.6 Flash Loan Contract
	2.2.7 The Stable Coin Token Contract
	2.2.8 Swapper Contract
	2.2.9 Oracle Contracts

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Approximated Fee Charged in Debt Transfer
	5.2 Ignored Return Value of _repayDebt
	5.3 Possible Gas Optimization in Mappings
	5.4 Unchecked Collateral Amount

	6 Resolved Findings
	6.1 Unchecked VaultManager Address
	6.2 Inconsistent Access Control
	6.3 Incorrect Accounting of Global Debt
	6.4 Stuck Ether
	6.5 Incomplete Specifications BaseReactor
	6.6 Mismatch of Specifications in _repayDebt
	6.7 Unclear Specifications for Swap Function
	6.8 Incomplete Specifications
	6.9 Inconsistent Error Message
	6.10 Misleading Function Name
	6.11 Mismatch of Specifications for Function _isSolvent
	6.12 Missing Description of Variable Decimals
	6.13 Missing Sanity Checks on Vault Creation
	6.14 No Event Emitted on Flashloan's Parameters Update
	6.15 Possible to Optimize Struct
	6.16 Precision Loss in Division
	6.17 Specification Mismatch in _handleRepay
	6.18 Specification Mismatch setUint64
	6.19 Unchecked Array Length
	6.20 Unchecked VaultID When Adding Collateral

	7 Notes
	7.1 Default VaultID Value
	7.2 Dependency on Freshness of Chainlink Oracle Prices
	7.3 Event MinterToggled Can Be Emitted Multiple Times
	7.4 Inconsistency Between Debt and Issued Stable Coins
	7.5 Repay Fee Calculation
	7.6 System Inconsistency
	7.7 Unbounded Loops in Treasury Contract

